ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton flavour violation in rare $Lambda_b$ decays

330   0   0.0 ( 0 )
 نشر من قبل Muslem Rahimi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Lepton flavour violation (LFV) naturally occurs in many new physics models, specifically in those explaining the $B$ anomalies. While LFV has already been studied for mesonic decays, it is important to consider also baryonic decays mediated by the same quark transition. In this paper, we study LFV in the baryonic $Lambda_b to Lambda ell_1 ell_2$ using for the first time a full basis of New Physics operators. We present expected bounds on the branching ratio in a model-independent framework and using two specific new physics models. Finally, we point out the interplay and orthogonality between the baryonic and mesonic LFV searches.



قيم البحث

اقرأ أيضاً

We consider a two-Higgs-doublet extension of the Standard Model, with three right-handed neutrino singlets and the seesaw mechanism, wherein all the Yukawa-coupling matrices are lepton flavour-diagonal and lepton flavour violation is soft, originatin g solely in the non-flavour-diagonal Majorana mass matrix of the right-handed neutrinos. We consider the limit $m_R to infty$ of this model, where $m_R$ is the seesaw scale. We demonstrate that there is a region in parameter space where the branching ratios of all five charged-lepton decays $ell_1^- to ell_2^- ell_3^+ ell_3^-$ are close to their experimental upper bounds, while the radiative decays $ell_1^- to ell_2^- gamma$ are invisible because their branching ratios are suppressed by $m_R^{-4}$. We also consider the anomalous magnetic moment of the muon and show that in our model the contributions from the extra scalars, both charged and neutral, can remove the discrepancy between its experimental and theoretical values.
143 - A. Lami , J. Portoles 2016
We study Lepton Flavour Violating hadron decays of the tau lepton within the Simplest Little Higgs model. Namely we consider $tau rightarrow mu (P, V, PP)$ where $P$ and $V$ are short for a pseudoscalar and a vector meson. We find that, in the most p ositive scenarios, branching ratios for these processes are predicted to be, at least, four orders of magnitude smaller than present experimental bounds.
Some models of leptogenesis involve a quasi-degenerate pair of heavy neutrinos $N_{1,2}$ whose masses can be small, $O({rm GeV})$. Such neutrinos can contribute to the rare lepton-number-violating (LNV) decay $W^pm to ell_1^pm ell_2^pm (q{bar q})^mp$ . If both $N_1$ and $N_2$ contribute, there can be a CP-violating rate difference between the LNV decay of a $W^-$ and its CP-conjugate decay. In this paper, we examine the prospects for measuring such a CP asymmetry $A_{rm CP}$ at the LHC. We assume a value for the heavy-light neutrino mixing parameter $|B_{ell N}|^2 = 10^{-5}$, which is allowed by the present experimental constraints, and consider $5~{rm GeV} le M_N le 80~{rm GeV}$. We consider thr
192 - David London 2021
Some models of leptogenesis involve a nearly-degenerate pair of heavy Majorana neutrinos $N_{1,2}$ whose masses can be small, $O({rm GeV})$. There can be heavy-light neutrino mixing parametrized by $|B_{ell N}|^2 = 10^{-5}$, which leads to the rare l epton-number-violating decay $W^pm to ell_1^pm ell_2^pm (q{bar q})^mp$. With contributions to this decay from both $N_1$ and $N_2$, a CP-violating rate difference between the decay and its CP-conjugate can be generated. In this talk, I describe the prospects for measuring such a CP asymmetry $A_{rm CP}$ at the LHC. I consider thre
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t he type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا