ﻻ يوجد ملخص باللغة العربية
The main objective of this paper is to derive a new sequential characterization of the Cover and Pombra cite{cover-pombra1989} characterization of the $n-$finite block or transmission feedback information ($n$-FTFI) capacity, which clarifies several issues of confusion and incorrect interpretation of results in literature. The optimal channel input processes of the new equivalent sequential characterizations are expressed as functionals of a sufficient statistic and a Gaussian orthogonal innovations process. From the new representations follows that the Cover and Pombra characterization of the $n-$FTFI capacity is expressed as a functional of two generalized matrix difference Riccati equations (DRE) of filtering theory of Gaussian systems. This contradicts results which are redundant in the literature, and illustrates the fundamental complexity of the feedback capacity formula.
In the recent paper [1] it is shown, via an application example, that the Cover and Pombra [2] characterization of the $n-$block or transmission feedback capacity formula, of additive Gaussian noise (AGN) channels, is the subject of much confusion in
We consider the problem of decentralized sequential active hypothesis testing (DSAHT), where two transmitting agents, each possessing a private message, are actively helping a third agent--and each other--to learn the message pair over a discrete mem
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of
This paper studies the capacity of the peak-and-average-power-limited Gaussian channel when its output is quantized using a dithered, infinite-level, uniform quantizer of step size $Delta$. It is shown that the capacity of this channel tends to that
Inference on vertex-aligned graphs is of wide theoretical and practical importance.There are, however, few flexible and tractable statistical models for correlated graphs, and even fewer comprehensive approaches to parametric inference on data arisin