The aim of this note is to point out a convexity property with respect to the root lattice for the support of the highest weights that occur in a tensor product of irreducible rational representations of $SL(n)$ over the complex numbers. The observation is a consequence of the convexity properties of the saturation cone and the validity of the saturation conjecture for $SL(n)$.
We study the quotient of $mathcal{T}_n = Rep(GL(n|n))$ by the tensor ideal of negligible morphisms. If we consider the full subcategory $mathcal{T}_n^+$ of $mathcal{T}_n$ of indecomposable summands in iterated tensor products of irreducible represent
ations up to parity shifts, its quotient is a semisimple tannakian category $Rep(H_n)$ where $H_n$ is a pro-reductive algebraic group. We determine the connected derived subgroup $G_n subset H_n$ and the groups $G_{lambda} = (H_{lambda}^0)_{der}$ corresponding to the tannakian subcategory in $Rep(H_n)$ generated by an irreducible representation $L(lambda)$. This gives structural information about the tensor category $Rep(GL(n|n))$, including the decomposition law of a tensor product of irreducible representations up to summands of superdimension zero. Some results are conditional on a hypothesis on $2$-torsion in $pi_0(H_n)$.
In this paper, we realize polynomial $H$-modules $Omega(lambda,alpha,beta)$ from irreducible twisted Heisenberg-Virasoro modules $A_{alpha,beta}$. It follows from $H$-modules $Omega(lambda,alpha,beta)$ and $mathrm{Ind}(M)$ that we obtain a class of n
atural non-weight tensor product modules $big(bigotimes_{i=1}^mOmega(lambda_i,alpha_i,beta_i)big)otimes mathrm{Ind}(M)$. Then we give the necessary and sufficient conditions under which these modules are irreducible and isomorphic, and also give that the irreducible modules in this class are new.
In this paper, we present a class of non-weight Virasoro modules $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)otimesbigotimes_{i=1}^mOmega(lambda_i,alpha_i)$ where $Omega(lambda_i,alpha_i)$ and $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)$ are irreduc
ible Virasoro modules defined in cite{LZ2} and cite{LZ} respectively. The necessary and sufficient conditions for $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)otimesbigotimes_{i=1}^mOmega(lambda_i,alpha_i)$ to be irreducible are obtained. Then we determine the necessary and sufficient conditions for two such irreducible Virasoro modules to be isomorphic. At last, we show that the irreducible modules in this class are new.
With the aid of the exponentiation functor and Fourier transform we introduce a class of modules $T(g,V,S)$ of $mathfrak{sl} (n+1)$ of mixed tensor type. By varying the polynomial $g$, the $mathfrak{gl}(n)$-module $V$, and the set $S$, we obtain impo
rtant classes of weight modules over the Cartan subalgebra $mathfrak h$ of $mathfrak{sl} (n+1)$, and modules that are free over $mathfrak h$. Furthermore, these modules are obtained through explicit presentation of the elements of $mathfrak{sl} (n+1)$ in terms of differential operators and lead to new tensor coherent families of $mathfrak{sl} (n+1)$. An isomorphism theorem and simplicity criterion for $T(g,V,S)$ is provided.
We provide a classification and an explicit realization of all irreducible Gelfand-Tsetlin modules of the complex Lie algebra sl(3). The realization of these modules uses regular and derivative Gelfand-Tsetlin tableaux. In particular, we list all sim
ple Gelfand-Tsetlin sl(3)-modules with infinite-dimensional weight spaces. Also, we express all simple Gelfand-Tsetlin sl(3)-modules as subquotionets of localized Gelfand-Tsetlin E_{21}-injective modules.
Hariharan Narayanan
,C. S. Rajan
.
(2021)
.
"On a convexity property of tensor products of irreducible, rational representations of $SL(n)$"
.
C. S. Rajan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا