ترغب بنشر مسار تعليمي؟ اضغط هنا

A machine learning approach to mapping baryons onto dark matter halos using the EAGLE and C-EAGLE simulations

201   0   0.0 ( 0 )
 نشر من قبل Christopher Lovell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution cosmological hydrodynamic simulations are currently limited to relatively small volumes due to their computational expense. However, much larger volumes are required to probe rare, overdense environments, and measure clustering statistics of the large scale structure. Typically, zoom simulations of individual regions are used to study rare environments, and semi-analytic models and halo occupation models applied to dark matter only (DMO) simulations are used to study the Universe in the large-volume regime. We propose a new approach, using a machine learning framework to explore the halo-galaxy relationship in the periodic EAGLE simulations, and zoom C-EAGLE simulations of galaxy clusters. We train a tree based machine learning method to predict the baryonic properties of galaxies based on their host dark matter halo properties. The trained model successfully reproduces a number of key distribution functions for an infinitesimal fraction of the computational cost of a full hydrodynamic simulation. By training on both periodic simulations as well as zooms of overdense environments, we learn the bias of galaxy evolution in differing environments. This allows us to apply the trained model to a larger DMO volume than would be possible if we only trained on a periodic simulation. We demonstrate this application using the $(800 ; mathrm{Mpc})^3$ P-Millennium simulation, and present predictions for key baryonic distribution functions and clustering statistics from the EAGLE model in this large volume.



قيم البحث

اقرأ أيضاً

We report the alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. The combination of these state-of-the-art hydro-cosmological simulations enables us to span four orders of magnitude in halo mass ($11 < log_{10}(M_{200}/ [h^{-1}M_odot]) < 15$), a wide radial range ($-2.3 < log_{10}(r/[h^{-1}Mpc ]) < 1.3$) and redshifts $0 < z < 1$. The shape parameters of the dark matter, stellar and hot gas distributions follow qualitatively similar trends: they become more aspherical (and triaxial) with increasing halo mass, radius and redshift. We measure the misalignment of the baryonic components (hot gas and stars) of galaxies with their host halo as a function of halo mass, radius, redshift, and galaxy type (centrals vs satellites and early- vs late-type). Overall, galaxies align well with the local distribution of the total (mostly dark) matter. However, the stellar distributions on galactic scales exhibit a median misalignment of about 45-50 degrees with respect to their host haloes. This misalignment is reduced to 25-30 degrees in the most massive haloes ($13 < log_{10}(M_{200}/ [h^{-1}M_odot ]) < 15$). Half of the disc galaxies in the EAGLE simulations have a misalignment angle with respect to their host haloes larger than 40 degrees. We present fitting functions and tabulated values for the probability distribution of galaxy-halo misalignment to enable a straightforward inclusion of our results into models of galaxy formations based on purely collisionless N-body simulations.
207 - Matthieu Schaller 2014
We investigate the internal structure and density profiles of halos of mass $10^{10}-10^{14}~M_odot$ in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These follow the formation of galaxies in a $Lambda$CDM Universe and include a treatment of the baryon physics thought to be relevant. The EAGLE simulations reproduce the observed present-day galaxy stellar mass function, as well as many other properties of the galaxy population as a function of time. We find significant differences between the masses of halos in the EAGLE simulations and in simulations that follow only the dark matter component. Nevertheless, halos are well described by the Navarro-Frenk-White (NFW) density profile at radii larger than ~5% of the virial radius but, closer to the centre, the presence of stars can produce cuspier profiles. Central enhancements in the total mass profile are most important in halos of mass $10^{12}-10^{13}M_odot$, where the stellar fraction peaks. Over the radial range where they are well resolved, the resulting galaxy rotation curves are in very good agreement with observational data for galaxies with stellar mass $M_*<5times10^{10}M_odot$. We present an empirical fitting function that describes the total mass profiles and show that its parameters are strongly correlated with halo mass.
We investigate the abundance of galactic molecular hydrogen (H$_2$) in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-pro cessing using two different prescriptions that depend on the local dust-to-gas ratio and the interstellar radiation field. Both result in H$_2$ galaxy mass functions that agree well with observations in the local and high-redshift Universe. The simulations reproduce the observed scaling relations between the mass of H$_2$ and the stellar mass, star formation rate and stellar surface density. Towards high edshifts, galaxies in the simulations display larger H$_2$ mass fractions, and correspondingly lower H$_2$ depletion timescales, also in good agreement with observations. The comoving mass density of H$_2$ in units of the critical density, $Omega_{rm H_2}$, peaks at $zapprox 1.2-1.5$, later than the predicted peak of the cosmic star formation rate activity, at $zapprox 2$. This difference stems from the decrease in gas metallicity and increase in interstellar radiation field with redshift, both of which hamper H$_2$ formation. We find that the cosmic H$_2$ budget is dominated by galaxies with $M_{rm H_2}>10^9,rm M_{odot}$, star formation rates $>10,rm M_{odot},rm yr^{-1}$ and stellar masses $M_{rm stellar}>10^{10},rm M_{odot}$, which are readily observable in the optical and near-IR. The match between the H$_2$ properties of galaxies that emerge in the simulations and observations is remarkable, particularly since H$_2$ observations were not used to adjust parameters in EAGLE.
We use the EAGLE suite of hydrodynamical simulations to analyse accretion rates (and the breakdown of their constituent channels) onto haloes over cosmic time, comparing the behaviour of baryons and dark matter (DM). We also investigate the influence of sub-grid baryon physics on halo-scale inflow, specifically the consequences of modelling radiative cooling, as well as feedback from stars and active galactic nuclei (AGN). We find that variations in halo baryon fractions at fixed mass (particularly their circum-galactic medium gas content) are very well correlated with variations in the baryon fraction of accreting matter, which we show to be heavily suppressed by stellar feedback in low-mass haloes, $M_{rm halo}lesssim10^{11.5}M_{odot}$. Breaking down accretion rates into first infall, recycled, transfer and merger components, we show that baryons are much more likely to be smoothly accreted than to have originated from mergers when compared to DM, finding (averaged across halo mass) a merger contribution of $approx6%$ for baryons, and $approx15%$ for DM at $zapprox0$. We also show that the breakdown of inflow into different channels is strongly dependent on sub-grid physics, particularly the contribution of recycled accretion (accreting matter that has been previously ejected from progenitor haloes). Our findings highlight the dual role that baryonic feedback plays in regulating the evolution of galaxies and haloes: by (i) directly removing gas from haloes, and (ii) suppressing gas inflow to haloes.
We use the eagle simulations to study the connection between the quenching timescale, $tau_{rm Q}$, and the physical mechanisms that transform star-forming galaxies into passive galaxies. By quantifying $tau_{rm Q}$ in two complementary ways - as the time over which (i) galaxies traverse the green valley on the colour-mass diagram, or (ii) leave the main sequence of star formation and subsequently arrive on the passive cloud in specific star formation rate (SSFR)-mass space - we find that the $tau_{rm Q}$ distribution of high-mass centrals, low-mass centrals and satellites are divergent. In the low stellar mass regime where $M_{star}<10^{9.6}M_{odot}$, centrals exhibit systematically longer quenching timescales than satellites ($approx 4$~Gyr compared to $approx 2$~Gyr). Satellites with low stellar mass relative to their halo mass cause this disparity, with ram pressure stripping quenching these galaxies rapidly. Low mass centrals are quenched as a result of stellar feedback, associated with long $tau_{rm Q}gtrsim 3$~Gyr. At intermediate stellar masses where $10^{9.7},rm M_{odot}<M_{star}<10^{10.3},rm M_{odot}$, $tau_{rm Q}$ are the longest for both centrals and satellites, particularly for galaxies with higher gas fractions. At $M_{star}gtrsim 10^{10.3},rm M_{odot}$, galaxy merger counts and black hole activity increase steeply for all galaxies. Quenching timescales for centrals and satellites decrease with stellar mass in this regime to $tau_{rm Q}lesssim2$~Gyr. In anticipation of new intermediate redshift observational galaxy surveys, we analyse the passive and star-forming fractions of galaxies across redshift, and find that the $tau_{rm Q}$ peak at intermediate stellar masses is responsible for a peak (inflection point) in the fraction of green valley central (satellite) galaxies at $zapprox 0.5-0.7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا