ﻻ يوجد ملخص باللغة العربية
The non-trivial magnetic texture in real space gives rise to the intriguing phenomenon of topological Hall effect (THE), which is relatively less explored in topological semimetals. Here, we report large THE in the antiferromagnetic (AFM) state in single crystals of EuAgAs, an AFM Dirac semimetal. EuAgAs hosts AFM ground state below $T_N$ = 12 K with a weak ferromagnetic component. The in-plane isothermal magnetization below $T_N$ exhibits a weak metamagnetic transition. We also observe chiral anomaly induced positive longitudinal magnetoconductivity which indicates a Weyl fermion state under applied magnetic field. The first-principles calculations reveal that EuAgAs is an AFM Dirac semimetal with a pair of Dirac cones, and therefore, a Weyl semimetailic state can be realized under time-reversal symmetry breaking via an applied magnetic field. Our study establishes that EuAgAs is a novel system for exploiting the interplay of band topology and the topology of the magnetic texture.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here,
Dirac and Weyl semimetals are new discovered topological nontrivial materials with the linear band dispersions around the Dirac/Weyl points. When applying non-orthogonal electric current and magnetic field, an exotic phenomenon called chiral anomaly
Unconventional surface states protected by non-trivial bulk orders are sources of various exotic quantum transport in topological materials. One prominent example is the unique magnetic orbit, so-called Weyl orbit, in topological semimetals where two
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations
The orthorhombic antiferromagnetic compound CuMnAs was recently predicted to be an antiferromagnetic Dirac semimetal if both the Ry gliding and S2z rotational symmetries are preserved in its magnetic ordered state. In our previous work on Cu0.95MnAs