ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origins of COVID-19

300   0   0.0 ( 0 )
 نشر من قبل J. C. Phillips
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف J. C. Phillips




اسأل ChatGPT حول البحث

The titled subject has attracted much interest. Here we summarize the substantial results obtained by a physical model of protein evolution based on hydropathic domain dynamics. In a recent Letter eighteen biologists suggested that the titled subject should be studied in a way inclusive of broad expertise (1). There is an even broader view that has been developed over several decades by physicists (2,3). This view is based on analyzing amino acid sequences of proteins. These sequences are now available on-line at Uniprot, and represent a treasure-trove of data (4).

قيم البحث

اقرأ أيضاً

COVID-19 infections have well described systemic manifestations, especially respiratory problems. There are currently no specific treatments or vaccines against the current strain. With higher case numbers, a range of neurological symptoms are becomi ng apparent. The mechanisms responsible for these are not well defined, other than those related to hypoxia and microthrombi. We speculate that sustained systemic immune activation seen with SARS-CoV-2 may also cause secondary autoimmune activation in the CNS. Patients with chronic neurological diseases may be at higher risk because of chronic secondary respiratory disease and potentially poor nutritional status. Here, we review the impact of COVID-19 on people with chronic neurological diseases and potential mechanisms. We believe special attention to protecting people with neurodegenerative disease is warranted. We are concerned about a possible delayed pandemic in the form of an increased burden of neurodegenerative disease after acceleration of pathology by systemic COVID-19 infections.
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected near 5 million people and led to over 0.3 million deaths. Currently, there is no specific anti-SARS-CoV-2 medication. New drug discovery typically takes more than ten years. Drug repositioning becomes one of the most feasible approaches for combating COVID-19. This work curates the largest available experimental dataset for SARS-CoV-2 or SARS-CoV main protease inhibitors. Based on this dataset, we develop validated machine learning models with relatively low root mean square error to screen 1553 FDA-approved drugs as well as other 7012 investigational or off-market drugs in DrugBank. We found that many existing drugs might be potentially potent to SARS-CoV-2. The druggability of many potent SARS-CoV-2 main protease inhibitors is analyzed. This work offers a foundation for further experimental studies of COVID-19 drug repositioning.
We consider the recent surge of information on the potential benefits of acid-suppression drugs in the context of COVID-19, with an eye on the variability (and confusion) across the reported findings--at least as regards the popular antacid famotidin e. The inconsistencies reflect contradictory conclusions from independent clinical-based studies that took roughly similar approaches, in terms of experimental design (retrospective, cohort-based, etc.) and statistical analyses (propensity-score matching and stratification, etc.). The confusion has significant ramifications in choosing therapeutic interventions: e.g., do potential benefits of famotidine indicate its use in a particular COVID-19 case? Beyond this pressing therapeutic issue, conflicting information on famotidine must be resolved before its integration in ontological and knowledge graph-based frameworks, which in turn are useful in drug repurposing efforts. To begin systematically structuring the rapidly accumulating information, in the hopes of clarifying and reconciling the discrepancies, we consider the contradictory information along three proposed axes: (1) a context-of-disease axis, (2) a degree-of-[therapeutic]-benefit axis, and (3) a mechanism-of-action axis. We suspect that incongruencies in how these axes have been (implicitly) treated in past studies has led to the contradictory indications for famotidine and COVID-19. We also trace the evolution of information on acid-suppression agents as regards the transmission, severity, and mortality of COVID-19, given the many literature reports that have accumulated. By grouping the studies conceptually and thematically, we identify three eras in the progression of our understanding of famotidine and COVID-19. Harmonizing these findings is a key goal for both clinical standards-of-care (COVID and beyond) as well as ontological and knowledge graph-based approaches.
154 - Ralf Kircheis 2020
Patients infected with SARS-CoV-2 show a wide spectrum of clinical manifestations ranging from mild febrile illness and cough up to acute respiratory distress syndrome, multiple organ failure and death. Data from patients with severe clinical manifes tations compared to patients with mild symptoms indicate that highly dysregulated exuberant inflammatory responses correlate with severity of disease and lethality. Significantly elevated cytokine levels, i.e. cytokine storm, seem to play a central role in severity and lethality in COVID-19. We have previously shown that excessive cytokine release induced by highly pathogenic avian H5N1 influenza A virus was reduced by application of proteasome inhibitors. In the present study we present experimental data of a central cellular pro-inflammatory signal pathways, NF-kappaB, in the context of published clinical data from COVID-19 patients and develop a hypothesis for a therapeutic approach aiming at the simultaneous inhibition of whole cascades of pro-inflammatory cytokines and chemokines via blocking the nuclear translocation of NF-kappaB by proteasome inhibitors. The simultaneous inhibition of multiple cytokines/chemokines using clinically approved proteasome inhibitors is expected to have a higher therapeutic potential compared to single target approaches to prevent cascade (i.e. triggering, synergistic, and redundant) effects of multiple induced cytokines and may provide an additional therapeutic option to be explored for treatment of critical stage COVID-19 patients.
Under the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop and as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and thus attract much attention in the past few months. This work reviews seven existing antibodies for SARS-CoV-2 spike (S) protein with three-dimensional (3D) structures deposited in the Protein Data Bank. Five antibody structures associated with SARS-CoV are evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those of angiotensin-converting enzyme 2 (ACE2) and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis (TDA), a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the aforementioned fourteen antibody-antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا