ﻻ يوجد ملخص باللغة العربية
Focal plane wavefront sensing (FPWFS) is appealing for several reasons. Notably, it offers high sensitivity and does not suffer from non-common path aberrations (NCPA). The price to pay is a high computational burden and the need for diversity to lift any phase ambiguity. If those limitations can be overcome, FPWFS is a great solution for NCPA measurement, a key limitation for high-contrast imaging, and could be used as adaptive optics wavefront sensor. Here, we propose to use deep convolutional neural networks (CNNs) to measure NCPA based on focal plane images. Two CNN architectures are considered: ResNet-50 and U-Net which are used respectively to estimate Zernike coefficients or directly the phase. The models are trained on labelled datasets and evaluated at various flux levels and for two spatial frequency contents (20 and 100 Zernike modes). In these idealized simulations we demonstrate that the CNN-based models reach the photon noise limit in a large range of conditions. We show, for example, that the root mean squared (rms) wavefront error (WFE) can be reduced to < $lambda$/1500 for $2 times 10^6$ photons in one iteration when estimating 20 Zernike modes. We also show that CNN-based models are sufficiently robust to varying signal-to-noise ratio, under the presence of higher-order aberrations, and under different amplitudes of aberrations. Additionally, they display similar to superior performance compared to iterative phase retrieval algorithms. CNNs therefore represent a compelling way to implement FPWFS, which can leverage the high sensitivity of FPWFS over a broad range of conditions.
Focal plane wavefront sensing is an elegant solution for wavefront sensing since near-focal images of any source taken by a detector show distortions in the presence of aberrations. Non-Common Path Aberrations and the Low Wind Effect both have the ab
In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as a wavefront sensor to measure and correct the (quasi-)static aberrations, without de
High quality, repeatable point-spread functions are important for science cases like direct exoplanet imaging, high-precision astrometry, and high-resolution spectroscopy of exoplanets. For such demanding applications, the initial on-sky point-spread
Direct imaging of Earth-like planets from space requires dedicated observatories, combining large segmented apertures with instruments and techniques such as coronagraphs, wavefront sensors, and wavefront control in order to reach the high contrast o
We present a method to calibrate a high-resolution wavefront-correcting device with a single, static camera, located in the focal plane; no moving of any component is needed. The method is based on a localized diversity and differential optical trans