ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifest Spacetime Supersymmetry and the Superstring

69   0   0.0 ( 0 )
 نشر من قبل Nathan Berkovits
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Nathan Berkovits




اسأل ChatGPT حول البحث

The algebra of spacetime supersymmetry generators in the RNS formalism for the superstring closes only up to a picture-changing operation. After adding non-minimal variables and working in the large Hilbert space, the algebra closes without picture-changing and spacetime supersymmetry can be made manifest. The resulting non-minimal version of the RNS formalism is related by a field redefinition to the pure spinor formalism.

قيم البحث

اقرأ أيضاً

A superspace formulation of type II superstring background with manifest T-duality symmetry is presented. This manifestly T-dual formulation is constructed in a space spanned by two sets of nondegenerate super-Poincare algebra. Supertorsion constrain ts are obtained from consistency of the kappa-symmetric Virasoro constraints. All superconnections and vielbein fields are solved in terms of a prepotential which is one of the vielbein components. AdS5xS5 background is explained in this formulation.
65 - Jeong-Hyuck Park 2016
We construct a world-sheet action for Green-Schwarz superstring in terms of doubled-yet-gauged spacetime coordinates. For an arbitrarily curved NS-NS background, the action possesses $mathbf{O}(10,10)$ T-duality, $mathbf{Spin}(1,9)timesmathbf{Spin}(9 ,1)$ Lorentz symmetry, coordinate gauge symmetry, spacetime doubled-yet-gauged diffeomorphisms, world-sheet diffeomorphisms and Weyl symmetry. Further, restricted to flat backgrounds, it enjoys maximal spacetime supersymmetry and kappa-symmetry. After the auxiliary coordinate gauge symmetry potential being integrated out, our action can consistently reduce to the original undoubled Green-Schwarz action. Thanks to the twofold spin groups, the action is unique: it is specific choices of the NS-NS backgrounds that distinguish IIA or IIB, as well as lead to non-Riemannian or non-relativistic superstring a la Gomis-Ooguri which might deserve the nomenclature, type IIC.
We consider the dimensional regularization of the light-cone gauge type II superstring field theories in the NSR formalism. In the previous work, we have calculated the tree-level amplitudes with external lines in the (NS,NS) sector using the regular ization and shown that the desired results are obtained without introducing contact term interactions. In this work, we study the tree-level amplitudes with external lines in the Ramond sector. In order to deal with them, we propose a worldsheet theory to be used instead of that for the naive dimensional regularization. With the worldsheet theory, we regularize and define the tree-level amplitudes by analytic continuation. We show that the results coincide with those of the first quantized formulation.
We initiate the study of gravitational wave (GW) signals from first-order phase transitions in supersymmetry-breaking hidden sectors. Such phase transitions often occur along a pseudo-flat direction universally related to supersymmetry (SUSY) breakin g in hidden sectors that spontaneously break $R$-symmetry. The potential along this pseudo-flat direction imbues the phase transition with a number of novel properties, including a nucleation temperature well below the scale of heavy states (such that the temperature dependence is captured by the low-temperature expansion) and significant friction induced by the same heavy states as they pass through bubble walls. In low-energy SUSY-breaking hidden sectors, the frequency of the GW signal arising from such a phase transition is guaranteed to lie within the reach of future interferometers given existing cosmological constraints on the gravitino abundance. Once a mediation scheme is specified, the frequency of the GW peak correlates with the superpartner spectrum. Current bounds on supersymmetry are compatible with GW signals at future interferometers, while the observation of a GW signal from a SUSY-breaking hidden sector would imply superpartners within reach of future colliders.
58 - Yuqi Li , Warren Siegel 2017
We calculate the chiral string amplitude in pure spinor formalism and take four point amplitude as an example. The method could be easily generalized to $N$ point amplitude by complicated calculations. By doing the usual calculations of string theory first and using a special singular gauge limit, we produce the amplitude with the integral over Dirac $delta$-functions. The Bosonic part of the amplitude matches the CHY amplitude and the Fermionic part gives us the supersymmetric generalization of CHY amplitude. Finally, we also check the dependence on boundary condition for heterotic chiral string amplitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا