ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA observations of the variability of the quiet Sun at millimeter wavelengths

76   0   0.0 ( 0 )
 نشر من قبل Alexander Nindos
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quiet Sun at 1.26 and 3 mm, we study spatially resolved oscillations and transient brightenings, i.e. small, weak events of energy release. Both phenomena may have a bearing on the heating of the chromosphere. At 1.26 mm, in addition to power spectra of the original data, we degraded the images to the spatial resolution of the 3 mm images and used fields of view of equal area for both data sets. The detection of transient brightenings was made after the oscillations were removed. At both frequencies we detected p-mode oscillations in the range 3.6-4.4 mHz. In the corrected data sets, the oscillations at 1.26 and 3 mm showed brightness temperature fluctuations of ~1.7-1.8% with respect to the average quiet Sun, corresponding to 137 and 107 K, respectively. They represented a fraction of 0.55-0.68 of the full power spectrum and their energy density at 1.26 mm was 0.03 erg cm$^{-3}$. We detected 77 transient brightenings at 1.26 mm and 115 at 3 mm. Although the majority of the 1.26 mm events occurred in cell interior, their occurrence rate per unit area was higher than that of the 3 mm events. The computed low-end energy of the 1.26 mm transient brightenings ($1.8 times 10^{23}$ erg) is among the smallest ever reported, irrespective of the wavelength of observation. However, their power per unit area is smaller than that of the 3 mm events, probably due to the detection of many weak 1.26 mm events. We also found that ALMA bright network structures corresponded to dark mottles/spicules seen in broadband H$alpha$ images from the GONG network.

قيم البحث

اقرأ أيضاً

We present an initial study of one of the first ALMA Band 3 observations of the Sun with the aim to characterise the diagnostic potential of brightness temperatures measured with ALMA on the Sun. The observation covers 48min at a cadence of 2s target ing a Quiet Sun region at disk-centre. Corresponding time series of brightness temperature maps are constructed with the first version of the Solar ALMA Pipeline (SoAP) and compared to simultaneous SDO observations. The angular resolution of the observations is set by the synthesized beam (1.4x2.1as). The ALMA maps exhibit network patches, internetwork regions and also elongated thin features that are connected to large-scale magnetic loops as confirmed by a comparison with SDO maps. The ALMA Band 3 maps correlate best with the SDO/AIA 171, 131 and 304 channels in that they exhibit network features and, although very weak in the ALMA maps, imprints of large-scale loops. A group of compact magnetic loops is very clearly visible in ALMA Band 3. The brightness temperatures in the loop tops reach values of about 8000-9000K and in extreme moments up to 10 000K. ALMA Band 3 interferometric observations from early observing cycles already reveal temperature differences in the solar chromosphere. The weak imprint of magnetic loops and the correlation with the 171, 131, and 304 SDO channels suggests though that the radiation mapped in ALMA Band 3 might have contributions from a larger range of atmospheric heights than previously assumed but the exact formation height of Band 3 needs to be investigated in more detail. The absolute brightness temperature scale as set by Total Power measurements remains less certain and must be improved in the future. Despite these complications and the limited angular resolution, ALMA Band 3 observations have large potential for quantitative studies of the small-scale structure and dynamics of the solar chromosphere.
122 - Rohit Sharma , Divya Oberoi 2020
Quiet sun meterwave emission arises from thermal bremsstrahlung in the MK corona, and can potentially be a rich source of coronal diagnostics. On its way to the observer, it gets modified substantially due to the propagation effects - primarily refra ction and scattering - through the magnetized and turbulent coronal medium, leading to the redistribution of the intensity in the image plane. By comparing the full-disk meterwave solar maps during a quiet solar period and the modelled thermal bremsstrahlung emission, we characterise these propagation effects. The solar radio maps between 100 and 240 MHz come from the Murchison Widefield Array. FORWARD package is used to simulate thermal bremsstrahlung images using the self-consistent Magnetohydrodynamic Algorithm outside a Sphere coronal model. The FORWARD model does not include propagation effects. The differences between the observed and modelled maps are interpreted to arise due to scattering and refraction. There is a good general correspondence between the predicted and observed brightness distributions, though significant differences are also observed. We find clear evidence for the presence of significant propagation effects, including anisotropic scattering. The observed radio size of the Sun is 25--30% larger in area. The emission peak corresponding to the only visible active region shifts by 8--11 and its size increases by 35--40%. Our simple models suggest that the fraction of scattered flux density is always larger than a few tens of percent, and varies significantly between different regions. We estimate density inhomogeneities to be in the range 1--10%.
Solar observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA) facilitate studying the atmosphere of the Sun at chromospheric heights at high spatial and temporal resolution at millimeter wavelengths. ALMA intensity data at mm-wavel engths are used for a first detailed systematic assessment of the occurrence and properties of small-scale dynamical features in the quiet Sun. ALMA Band 3 data (~ $3$ mm / $100$ GHz) with spatial resolution ~ $1.4$ - $2.1$ arcsec and a duration of ~ $40$ min are analysed together with SDO/HMI magnetograms. The temporal evolution of the mm-maps is studied to detect pronounced dynamical features which are connected to dynamical events via a k-means clustering algorithm. The physical properties of the resulting events are studied and it is explored if they show properties consistent with propagating shock waves. For this purpose, observable shock wave signatures at mm wavelengths are calculated from one- and three-dimensional model atmospheres. There are 552 dynamical events detected with an excess in brightness temperature ($Delta T_text{b}$) of at least $geq 400$ K. The events show a large variety in size up to ~ $9$ arcsec, amplitude $Delta T_text{b}$ up to ~ $1200$ K with typical values between ~ $450$ - $750$ K and lifetime at FWHM of $Delta T_text{b}$ between ~ $43$ - $360$ s, with typical values between ~ $55$ - $125$ s. Furthermore, many of the events show signature properties that suggest that they are likely produced by propagating shock waves. There are a lot of small-scale dynamic structures detected in the Band 3 data, even though the spatial resolution sets limitations of the size of events that can be detected. The amount of dynamic signatures in the ALMA mm data is very low in areas with photospheric footpoints with stronger magnetic fields, which is consistent with the expectation for propagating shock waves.
We present an overview of high resolution quiet Sun observations, from disk center to the limb, obtained with the Atacama Large mm and sub-mm Array (ALMA) at 3 mm. Seven quiet Sun regions were observed with resolution of up to 2.5 by 4.5. We produced both average and snapshot images by self-calibrating the ALMA visibilities and combining the interferometric images with full disk solar images. The images show well the chromospheric network, which, based on the unique segregation method we used, is brighter than the average over the fields of view of the observed regions by $sim 305$ K while the intranetwork is less bright by $sim 280$ K, with a slight decrease of the network/intranetwork contrast toward the limb. At 3 mm the network is very similar to the 1600 AA images, with somewhat larger size. We detected for the first time spicular structures, rising up to 15 above the limb with a width down to the image resolution and brightness temperature of $sim$ 1800 K above the local background. No trace of spicules, either in emission or absorption, was found on the disk. Our results highlight ALMAs potential for the study of the quiet chromosphere.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a quiet-Sun region at a wavelength of 3 mm, obtained during the first solar ALMA cycle on April 27, 2017, and compare them with available chromospheric observations in the UV and visible as well as with photospheric magnetograms. ALMA images clearly reveal the presence of distinct particularly dark/cool areas in the millimeter maps having temperatures as low as 60% of the normal quiet Sun at 3 mm, which are not seen in the other data. We speculate that ALMA is sensing cool chromospheric gas, whose presence had earlier been inferred from infrared CO spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا