ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic Power for Swarms of Microscopic Robots

99   0   0.0 ( 0 )
 نشر من قبل Tad Hogg
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Tad Hogg




اسأل ChatGPT حول البحث

Ultrasound can power implanted medical devices. This paper evaluates its feasibility for microscopic robots in tissue that mechanically harvest energy using pistons. At these sizes, viscous drag dominates the piston motion and acoustic attenuation limits how far power can reach. Combining these factors shows that frequencies around 100kHz can deliver hundreds of picowatts to well-separated micron-size robots in low-attenuation tissues within about 10cm of the skin. However, applications of microscopic robots could involve large numbers, in which case the robots themselves significantly increase acoustic attenuation. Robots can mitigate this attenuation using cooperative swarm behaviors, with trade-offs among individual power, group performance and the complexity of the robot controllers. With such mitigating behaviors, acoustic power can be useful for swarms of a few hundred billion robots in the body, that each use tens of picowatts, on average, and can tolerate significant variability in available power, e.g, as robots in the bloodstream move from near the skin to deep within the body, or from low- to high-attenuation tissue such as the lungs.

قيم البحث

اقرأ أيضاً

The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from pas sing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.
169 - Tad Hogg 2013
Microscopic robots could perform tasks with high spatial precision, such as acting in biological tissues on the scale of individual cells, provided they can reach precise locations. This paper evaluates the feasibility of in vivo locomotion for micro n-size robots. Two appealing methods rely only on surface motions: steady tangential motion and small amplitude oscillations. These methods contrast with common microorganism propulsion based on flagella or cilia, which are more likely to damage nearby cells if used by robots made of stiff materials. The power potentially available to robots in tissue supports speeds ranging from one to hundreds of microns per second, over the range of viscosities found in biological tissue. We discuss design trade-offs among propulsion method, speed, power, shear forces and robot shape, and relate those choices to robot task requirements. This study shows that realizing such locomotion requires substantial improvements in fabrication capabilities and material properties over current technology.
139 - D. S. Drew , M. Devlin , E. Hawkes 2021
Modular soft robots combine the strengths of two traditionally separate areas of robotics. As modular robots, they can show robustness to individual failure and reconfigurability; as soft robots, they can deform and undergo large shape changes in ord er to adapt to their environment, and have inherent human safety. However, for sensing and communication these robots also combine the challenges of both: they require solutions that are scalable (low cost and complexity) and efficient (low power) to enable collectives of large numbers of robots, and these solutions must also be able to interface with the high extension ratio elastic bodies of soft robots. In this work, we seek to address these challenges using acoustic signals produced by piezoelectric surface transducers that are cheap, simple, and low power, and that not only integrate with but also leverage the elastic robot skins for signal transmission. Importantly, to further increase scalability, the transducers exhibit multi-functionality made possible by a relatively flat frequency response across the audible and ultrasonic ranges. With minimal hardware, they enable directional contact-based communication, audible-range communication at a distance, and exteroceptive sensing. We demonstrate a subset of the decentralized collective behaviors these functions make possible with multi-robot hardware implementations. The use of acoustic waves in this domain is shown to provide distinct advantages over existing solutions.
Robotic materials are multi-robot systems formulated to leverage the low-order computation and actuation of the constituents to manipulate the high-order behavior of the entire material. We study the behaviors of ensembles composed of smart active pa rticles, smarticles. Smarticles are small, low cost robots equipped with basic actuation and sensing abilities that are individually incapable of rotating or displacing. We demonstrate that a supersmarticle, composed of many smarticles constrained within a bounding membrane, can harness the internal collisions of the robotic material among the constituents and the membrane to achieve diffusive locomotion. The emergent diffusion can be directed by modulating the robotic material properties in response to a light source, analogous to biological phototaxis. The light source introduces asymmetries within the robotic material, resulting in modified populations of interaction modes and dynamics which ultimately result in supersmarticle biased locomotion. We present experimental methods and results for the robotic material which moves with a directed displacement in response to a light source.
Here we show that micro-swimmers can form a concealed swarm through synergistic cooperation in suppressing one anothers disturbing flows. We then demonstrate how such a concealed swarm can actively gather around a favorite spot, point toward a target , or track a desired trajectory in space, while minimally disturbing the ambient fluid. Our findings provide a clear road map to control and lead flocks of swimming micro-robots in stealth versus fast modes, tuned through their active collaboration in minimally disturbing the host medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا