ﻻ يوجد ملخص باللغة العربية
We introduce DoubleField, a novel representation combining the merits of both surface field and radiance field for high-fidelity human rendering. Within DoubleField, the surface field and radiance field are associated together by a shared feature embedding and a surface-guided sampling strategy. In this way, DoubleField has a continuous but disentangled learning space for geometry and appearance modeling, which supports fast training, inference, and finetuning. To achieve high-fidelity free-viewpoint rendering, DoubleField is further augmented to leverage ultra-high-resolution inputs, where a view-to-view transformer and a transfer learning scheme are introduced for more efficient learning and finetuning from sparse-view inputs at original resolutions. The efficacy of DoubleField is validated by the quantitative evaluations on several datasets and the qualitative results in a real-world sparse multi-view system, showing its superior capability for photo-realistic free-viewpoint human rendering. For code and demo video, please refer to our project page: http://www.liuyebin.com/dbfield/dbfield.html.
In this paper, we aim at synthesizing a free-viewpoint video of an arbitrary human performance using sparse multi-view cameras. Recently, several works have addressed this problem by learning person-specific neural radiance fields (NeRF) to capture t
We introduce a method to render Neural Radiance Fields (NeRFs) in real time using PlenOctrees, an octree-based 3D representation which supports view-dependent effects. Our method can render 800x800 images at more than 150 FPS, which is over 3000 time
This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a dynamic scene into a canonical neural radiance field and a set of deformation fields that map obser
Recent work on Neural Radiance Fields (NeRF) showed how neural networks can be used to encode complex 3D environments that can be rendered photorealistically from novel viewpoints. Rendering these images is very computationally demanding and recent i
Implicit neural rendering techniques have shown promising results for novel view synthesis. However, existing methods usually encode the entire scene as a whole, which is generally not aware of the object identity and limits the ability to the high-l