ترغب بنشر مسار تعليمي؟ اضغط هنا

COVID-Fact: Fact Extraction and Verification of Real-World Claims on COVID-19 Pandemic

404   0   0.0 ( 0 )
 نشر من قبل Tuhin Chakrabarty Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a FEVER-like dataset COVID-Fact of $4,086$ claims concerning the COVID-19 pandemic. The dataset contains claims, evidence for the claims, and contradictory claims refuted by the evidence. Unlike previous approaches, we automatically detect true claims and their source articles and then generate counter-claims using automatic methods rather than employing human annotators. Along with our constructed resource, we formally present the task of identifying relevant evidence for the claims and verifying whether the evidence refutes or supports a given claim. In addition to scientific claims, our data contains simplified general claims from media sources, making it better suited for detecting general misinformation regarding COVID-19. Our experiments indicate that COVID-Fact will provide a challenging testbed for the development of new systems and our approach will reduce the costs of building domain-specific datasets for detecting misinformation.



قيم البحث

اقرأ أيضاً

The rapid advancement of technology in online communication via social media platforms has led to a prolific rise in the spread of misinformation and fake news. Fake news is especially rampant in the current COVID-19 pandemic, leading to people belie ving in false and potentially harmful claims and stories. Detecting fake news quickly can alleviate the spread of panic, chaos and potential health hazards. We developed a two stage automated pipeline for COVID-19 fake news detection using state of the art machine learning models for natural language processing. The first model leverages a novel fact checking algorithm that retrieves the most relevant facts concerning user claims about particular COVID-19 claims. The second model verifies the level of truth in the claim by computing the textual entailment between the claim and the true facts retrieved from a manually curated COVID-19 dataset. The dataset is based on a publicly available knowledge source consisting of more than 5000 COVID-19 false claims and verified explanations, a subset of which was internally annotated and cross-validated to train and evaluate our models. We evaluate a series of models based on classical text-based features to more contextual Transformer based models and observe that a model pipeline based on BERT and ALBERT for the two stages respectively yields the best results.
The rise of Internet has made it a major source of information. Unfortunately, not all information online is true, and thus a number of fact-checking initiatives have been launched, both manual and automatic. Here, we present our contribution in this regard: WhatTheWikiFact, a system for automatic claim verification using Wikipedia. The system predicts the veracity of an input claim, and it further shows the evidence it has retrieved as part of the verification process. It shows confidence scores and a list of relevant Wikipedia articles, together with detailed information about each article, including the phrase used to retrieve it, the most relevant sentences it contains, and their stances with respect to the input claim, with associated probabilities.
The increasing concern with misinformation has stimulated research efforts on automatic fact checking. The recently-released FEVER dataset introduced a benchmark fact-verification task in which a system is asked to verify a claim using evidential sen tences from Wikipedia documents. In this paper, we present a connected system consisting of three homogeneous neural semantic matching models that conduct document retrieval, sentence selection, and claim verification jointly for fact extraction and verification. For evidence retrieval (document retrieval and sentence selection), unlike traditional vector space IR models in which queries and sources are matched in some pre-designed term vector space, we develop neural models to perform deep semantic matching from raw textual input, assuming no intermediate term representation and no access to structured external knowledge bases. We also show that Pageview frequency can also help improve the performance of evidence retrieval results, that later can be matched by using our neural semantic matching network. For claim verification, unlike previous approaches that simply feed upstream retrieved evidence and the claim to a natural language inference (NLI) model, we further enhance the NLI model by providing it with internal semantic relatedness scores (hence integrating it with the evidence retrieval modules) and ontological WordNet features. Experiments on the FEVER dataset indicate that (1) our neural semantic matching method outperforms popular TF-IDF and encoder models, by significant margins on all evidence retrieval metrics, (2) the additional relatedness score and WordNet features improve the NLI model via better semantic awareness, and (3) by formalizing all three subtasks as a similar semantic matching problem and improving on all three stages, the complete model is able to achieve the state-of-the-art results on the FEVER test set.
We present SUMO, a neural attention-based approach that learns to establish the correctness of textual claims based on evidence in the form of text documents (e.g., news articles or Web documents). SUMO further generates an extractive summary by pres enting a diversified set of sentences from the documents that explain its decision on the correctness of the textual claim. Prior approaches to address the problem of fact checking and evidence extraction have relied on simple concatenation of claim and document word embeddings as an input to claim driven attention weight computation. This is done so as to extract salient words and sentences from the documents that help establish the correctness of the claim. However, this design of claim-driven attention does not capture the contextual information in documents properly. We improve on the prior art by using improved claim and title guided hierarchical attention to model effective contextual cues. We show the efficacy of our approach on datasets concerning political, healthcare, and environmental issues.
We introduce HoVer (HOppy VERification), a dataset for many-hop evidence extraction and fact verification. It challenges models to extract facts from several Wikipedia articles that are relevant to a claim and classify whether the claim is Supported or Not-Supported by the facts. In HoVer, the claims require evidence to be extracted from as many as four English Wikipedia articles and embody reasoning graphs of diverse shapes. Moreover, most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations such as coreference. We show that the performance of an existing state-of-the-art semantic-matching model degrades significantly on our dataset as the number of reasoning hops increases, hence demonstrating the necessity of many-hop reasoning to achieve strong results. We hope that the introduction of this challenging dataset and the accompanying evaluation task will encourage research in many-hop fact retrieval and information verification. We make the HoVer dataset publicly available at https://hover-nlp.github.io
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا