ترغب بنشر مسار تعليمي؟ اضغط هنا

PROST: Physical Reasoning of Objects through Space and Time

76   0   0.0 ( 0 )
 نشر من قبل Stephane Aroca-Ouellette
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new probing dataset named PROST: Physical Reasoning about Objects Through Space and Time. This dataset contains 18,736 multiple-choice questions made from 14 manually curated templates, covering 10 physical reasoning concepts. All questions are designed to probe both causal and masked language models in a zero-shot setting. We conduct an extensive analysis which demonstrates that state-of-the-art pretrained models are inadequate at physical reasoning: they are influenced by the order in which answer options are presented to them, they struggle when the superlative in a question is inverted (e.g., most <-> least), and increasing the amount of pretraining data and parameters only yields minimal improvements. These results provide support for the hypothesis that current pretrained models ability to reason about physical interactions is inherently limited by a lack of real world experience. By highlighting these limitations, we hope to motivate the development of models with a human-like understanding of the physical world.



قيم البحث

اقرأ أيضاً

We study the problem of dynamic visual reasoning on raw videos. This is a challenging problem; currently, state-of-the-art models often require dense supervision on physical object properties and events from simulation, which are impractical to obtai n in real life. In this paper, we present the Dynamic Concept Learner (DCL), a unified framework that grounds physical objects and events from video and language. DCL first adopts a trajectory extractor to track each object over time and to represent it as a latent, object-centric feature vector. Building upon this object-centric representation, DCL learns to approximate the dynamic interaction among objects using graph networks. DCL further incorporates a semantic parser to parse questions into semantic programs and, finally, a program executor to run the program to answer the question, levering the learned dynamics model. After training, DCL can detect and associate objects across the frames, ground visual properties, and physical events, understand the causal relationship between events, make future and counterfactual predictions, and leverage these extracted presentations for answering queries. DCL achieves state-of-the-art performance on CLEVRER, a challenging causal video reasoning dataset, even without using ground-truth attributes and collision labels from simulations for training. We further test DCL on a newly proposed video-retrieval and event localization dataset derived from CLEVRER, showing its strong generalization capacity.
Neural networks lack the ability to reason about qualitative physics and so cannot generalize to scenarios and tasks unseen during training. We propose ESPRIT, a framework for commonsense reasoning about qualitative physics in natural language that g enerates interpretable descriptions of physical events. We use a two-step approach of first identifying the pivotal physical events in an environment and then generating natural language descriptions of those events using a data-to-text approach. Our framework learns to generate explanations of how the physical simulation will causally evolve so that an agent or a human can easily reason about a solution using those interpretable descriptions. Human evaluations indicate that ESPRIT produces crucial fine-grained details and has high coverage of physical concepts compared to even human annotations. Dataset, code and documentation are available at https://github.com/salesforce/esprit.
Recent efforts to create challenge benchmarks that test the abilities of natural language understanding models have largely depended on human annotations. In this work, we introduce the Break, Perturb, Build (BPB) framework for automatic reasoning-or iented perturbation of question-answer pairs. BPB represents a question by decomposing it into the reasoning steps that are required to answer it, symbolically perturbs the decomposition, and then generates new question-answer pairs. We demonstrate the effectiveness of BPB by creating evaluation sets for three reading comprehension (RC) benchmarks, generating thousands of high-quality examples without human intervention. We evaluate a range of RC models on our evaluation sets, which reveals large performance gaps on generated examples compared to the original data. Moreover, symbolic perturbations enable fine-grained analysis of the strengths and limitations of models. Last, augmenting the training data with examples generated by BPB helps close performance gaps, without any drop on the original data distribution.
A review on the main results concerning the algebraic and differential properties of the averaging and coordination operators and the properties of the space-time averages of macroscopic gravity is given. The algebraic and differential properties of the covariant space-time averaging procedure by means of using the parallel transportation averaging bivector operator are analyzed. The structure of the pseudo-Riemannian space-time manifolds of general relativity averaged by means of this procedure is discussed. A comparison of both procedures is given and the directions of further development of space-time averaging procedures of the physical classical fields are outlined.
Physical reasoning requires forward prediction: the ability to forecast what will happen next given some initial world state. We study the performance of state-of-the-art forward-prediction models in the complex physical-reasoning tasks of the PHYRE benchmark. We do so by incorporating models that operate on object or pixel-based representations of the world into simple physical-reasoning agents. We find that forward-prediction models can improve physical-reasoning performance, particularly on complex tasks that involve many objects. However, we also find that these improvements are contingent on the test tasks being small variations of train tasks, and that generalization to completely new task templates is challenging. Surprisingly, we observe that forward predictors with better pixel accuracy do not necessarily lead to better physical-reasoning performance.Nevertheless, our best models set a new state-of-the-art on the PHYRE benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا