ﻻ يوجد ملخص باللغة العربية
A graph $G$ is called interval colorable if it has a proper edge coloring with colors $1,2,3,dots$ such that the colors of the edges incident to every vertex of $G$ form an interval of integers. Not all graphs are interval colorable; in fact, quite few families have been proved to admit interval colorings. In this paper we introduce and investigate a new notion, the interval coloring thickness of a graph $G$, denoted ${theta_{mathrm{int}}}(G)$, which is the minimum number of interval colorable edge-disjoint subgraphs of $G$ whose union is $G$. Our investigation is motivated by scheduling problems with compactness requirements, in particular, problems whose solution may consist of several schedules, but where each schedule must not contain any waiting periods or idle times for all involved parties. We first prove that every connected properly $3$-edge colorable graph with maximum degree $3$ is interval colorable, and using this result, we deduce an upper bound on ${theta_{mathrm{int}}}(G)$ for general graphs $G$. We demonstrate that this upper bound can be improved in the case when $G$ is bipartite, planar or complete multipartite and consider some applications in timetabling.
A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph $G$ is a decomposition $mathcal{D}$ of $G$ such that every subgraph $H in mathcal{D}$ is locally irregular. A graph is s
We prove that for $k in mathbb{N}$ and $d leq 2k+2$, if a graph has maximum average degree at most $2k + frac{2d}{d+k+1}$, then $G$ decomposes into $k+1$ pseudoforests, where one of the pseudoforests has all connected components having at most $d$ edges.
Given a graph $G$, a decomposition of $G$ is a partition of its edges. A graph is $(d, h)$-decomposable if its edge set can be partitioned into a $d$-degenerate graph and a graph with maximum degree at most $h$. For $d le 4$, we are interested in the
For a real constant $alpha$, let $pi_3^alpha(G)$ be the minimum of twice the number of $K_2$s plus $alpha$ times the number of $K_3$s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on $r$ ve
In 2006, Barat and Thomassen posed the following conjecture: for each tree $T$, there exists a natural number $k_T$ such that, if $G$ is a $k_T$-edge-connected graph and $|E(G)|$ is divisible by $|E(T)|$, then $G$ admits a decomposition into copies o