ﻻ يوجد ملخص باللغة العربية
One of the main issues in hadron spectroscopy is to identify the origin of threshold or near-threshold enhancement. Prior to our study, there is no straightforward way of distinguishing even the lowest channel threshold-enhancement of the nucleon-nucleon system using only the cross-sections. The difficulty lies in the proximity of either a bound or virtual state pole to the threshold which creates an almost identical structure in the scattering region. Identifying the nature of the pole causing the enhancement falls under the general classification problem and supervised machine learning using a feed-forward neural network is known to excel in this task. In this study, we discuss the basic idea behind deep neural network and how it can be used to identify the nature of the pole causing the enhancement. The applicability of the trained network can be explored by using an exact separable potential model to generate a validation dataset. We find that within some acceptable range of the cut-off parameter, the neural network gives high accuracy of inference. The result also reveals the important role played by the background singularities in the training dataset. Finally, we apply the method to nucleon-nucleon scattering data and show that the network was able to give the correct nature of pole, i.e. virtual pole for ${}^1S_0$ partial cross-section and bound state pole for ${}^3S_0$.
Most of exotic resonances observed in the past decade appear as peak structure near some threshold. These near-threshold phenomena can be interpreted as genuine resonant states or enhanced threshold cusps. Apparently, there is no straightforward way
The observed enhancement of $pbar p$-production near the threshold in radiative decays of $J/psi$ and $e^+e^-$-annihilations can be explained with final state interactions among the produced $Nbar N$ system, where the enhancement is essentially deter
We develop a non-perturbative analysis of the electro-production of heavy vector mesons ($phi$, $J/Psi$) from threshold to high energy. We use the holographic construction with bulk confinement enforced through a soft wall. Using Witten diagrams, we
We apply perturbative QCD to investigate the near threshold heavy quarkonium photoproduction at large momentum transfer. From an explicit calculation, we show that the conventional power counting method will be modified and the three quark Fock state
We study the observed enhancement of a $pbar p$ system near the threshold in the process $J/psi to gamma pbar p$ and $e^+ e^- to pbar p$. From early studies the enhancement can be explained by final state interactions, which are in general taken into