ترغب بنشر مسار تعليمي؟ اضغط هنا

supervised adptive threshold network for instance segmentation

91   0   0.0 ( 0 )
 نشر من قبل Kuikun Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, instance segmentation is attracting more and more attention in machine learning region. However, there exists some defects on the information propagation in previous Mask R-CNN and other network models. In this paper, we propose supervised adaptive threshold network for instance segmentation. Specifically, we adopt the Mask R-CNN method based on adaptive threshold, and by establishing a layered adaptive network structure, it performs adaptive binarization on the probability graph generated by Mask RCNN to obtain better segmentation effect and reduce the error rate. At the same time, an adaptive feature pool is designed to make the transmission between different layers of the network more accurate and effective, reduce the loss in the process of feature transmission, and further improve the mask method. Experiments on benchmark data sets indicate that the effectiveness of the proposed model

قيم البحث

اقرأ أيضاً

Weakly-supervised instance segmentation, which could greatly save labor and time cost of pixel mask annotation, has attracted increasing attention in recent years. The commonly used pipeline firstly utilizes conventional image segmentation methods to automatically generate initial masks and then use them to train an off-the-shelf segmentation network in an iterative way. However, the initial generated masks usually contains a notable proportion of invalid masks which are mainly caused by small object instances. Directly using these initial masks to train segmentation model is harmful for the performance. To address this problem, we propose a hybrid network in this paper. In our architecture, there is a principle segmentation network which is used to handle the normal samples with valid generated masks. In addition, a complementary branch is added to handle the small and dim objects without valid masks. Experimental results indicate that our method can achieve significantly performance improvement both on the small object instances and large ones, and outperforms all state-of-the-art methods.
We propose point-based instance-level annotation, a new form of weak supervision for instance segmentation. It combines the standard bounding box annotation with labeled points that are uniformly sampled inside each bounding box. We show that the exi sting instance segmentation models developed for full mask supervision, like Mask R-CNN, can be seamlessly trained with the point-based annotation without any major modifications. In our experiments, Mask R-CNN models trained on COCO, PASCAL VOC, Cityscapes, and LVIS with only 10 annotated points per object achieve 94%--98% of their fully-supervised performance. The new point-based annotation is approximately 5 times faster to collect than object masks, making high-quality instance segmentation more accessible for new data. Inspired by the new annotation form, we propose a modification to PointRend instance segmentation module. For each object, the new architecture, called Implicit PointRend, generates parameters for a function that makes the final point-level mask prediction. Implicit PointRend is more straightforward and uses a single point-level mask loss. Our experiments show that the new module is more suitable for the proposed point-based supervision.
Low level features like edges and textures play an important role in accurately localizing instances in neural networks. In this paper, we propose an architecture which improves feature pyramid networks commonly used instance segmentation networks by incorporating low level features in all layers of the pyramid in an optimal and efficient way. Specifically, we introduce a new layer which learns new correlations from feature maps of multiple feature pyramid levels holistically and enhances the semantic information of the feature pyramid to improve accuracy. Our architecture is simple to implement in instance segmentation or object detection frameworks to boost accuracy. Using this method in Mask RCNN, our model achieves consistent improvement in precision on COCO Dataset with the computational overhead compared to the original feature pyramid network.
Instance-level object segmentation is an important yet under-explored task. The few existing studies are almost all based on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Noneth eless, generating accurate region proposals itself is quite challenging. In this work, we propose a Proposal-Free Network (PFN ) to address the instance-level object segmentation problem, which outputs the instance numbers of different categories and the pixel-level information on 1) the coordinates of the instance bounding box each pixel belongs to, and 2) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained in an end-to-end way without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed PFN solution well beats the state-of-the-arts for instance-level object segmentation. In particular, the $AP^r$ over 20 classes at 0.5 IoU reaches 58.7% by PFN, significantly higher than 43.8% and 46.3% by the state-of-the-art algorithms, SDS [9] and [16], respectively.
Active learning generally involves querying the most representative samples for human labeling, which has been widely studied in many fields such as image classification and object detection. However, its potential has not been explored in the more c omplex instance segmentation task that usually has relatively higher annotation cost. In this paper, we propose a novel and principled semi-supervised active learning framework for instance segmentation. Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks. Moreover, we devise a progressive pseudo labeling regime using the above TSP in semi-supervised manner, it can leverage both the labeled and unlabeled data to minimize labeling effort while maximize performance of instance segmentation. Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way. The extensive quantitatively and qualitatively experiments show that, our method can yield the best-performing model with notable less annotation costs, compared with state-of-the-arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا