ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the effect of electron temperature on transport in the two-dimensional Dirac surface states of the three-dimensional topological insulator HgTe. We find that around the minimal conductivity point, where both electrons and holes are present, heating the carriers with a DC current results in a non-monotonic differential resistance of narrow channels. We show that the observed initial increase in resistance can be attributed to electron-hole scattering, while the decrease follows naturally from the change in Fermi energy of the charge carriers. Both effects are governed dominantly by a van Hove singularity in the bulk valence band. The results demonstrate the importance of interband electron-hole scattering in the transport properties of topological insulators.
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi_2Se_3 in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9times10^16cm^-3, the lowest Landau level of the
The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_
The low energy physics of both graphene and surface states of three-dimensional topological insulators is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a heavy Dirac fermion in a graphene/topolo
We study the quantum Hall effect of Dirac fermions on the surface of a Wilson-Dirac type topological insulator thin film in the strong topological insulating phase. Although a magnetic field breaks time reversal symmetry of the bulk, the surface stat
Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons o