ﻻ يوجد ملخص باللغة العربية
Classifying the sub-categories of an object from the same super-category (e.g., bird) in a fine-grained visual classification (FGVC) task highly relies on mining multiple discriminative features. Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion. In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB), in combination with two alternative correlation metrics, to address this problem. The key idea is to randomly mask out a group of correlated channels during training to destruct features from co-adaptations and thus enhance feature representations. Extensive experiments on three benchmark FGVC datasets show that CDB effectively improves the performance.
Fine-grained visual classification (FGVC) is becoming an important research field, due to its wide applications and the rapid development of computer vision technologies. The current state-of-the-art (SOTA) methods in the FGVC usually employ attentio
Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation technique
Fine-grained visual classification (FGVC) aims to distinguish the sub-classes of the same category and its essential solution is to mine the subtle and discriminative regions. Convolution neural networks (CNNs), which employ the cross entropy loss (C
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categories. Most existing methods only tak
For fine-grained visual classification, objects usually share similar geometric structure but present variant local appearance and different pose. Therefore, localizing and extracting discriminative local features play a crucial role in accurate cate