ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge dependence of spontaneous radiation spectrum in a time-dependent relativistic non-perturbative Coulomb field

304   0   0.0 ( 0 )
 نشر من قبل Xue-Nan Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the gauge choice problem Lamb noticed to include a time-dependent relativistic non-perturbative Coulomb field, which can be produced by a cluster of relativistic charged particles. If adiabatic conditions are carefully maintained, such a field must be included along side the nuclear Coulomb potential when defining the atomic state. We reveal that when taking the external field approximation, the gauge choice for this time-dependent relativistic non-perturbative Coulomb field cannot be overcome by previous method, and leads to considerable gauge-dependence of the transient spontaneous radiation spectrum. We calculate explicitly with a simple one-dimensional charged harmonic oscillator that such a gauge-dependence can be of a measurable magnitude of 10 MHz or larger for the commonly used Coulomb, Lorentz, and multipolar gauges. Contrary to the popular view, we explain that this gauge dependence is not really a disaster, but actually an advantage here: The relativistic bound-state problem is so complicated that a fully quantum-field method is still lacking, thus the external field approximation cannot be derived and hence not guaranteed. However, by fitting to the experimental data, one may always define an effective external field, which may likely be parameterized with the gauge potential in a particular gauge. This effective external field would not only be of phenomenological use, but also shed light on the physical significance of the gauge field.



قيم البحث

اقرأ أيضاً

We present a nonperturbative, first-principles numerical approach for time-dependent problems in the framework of quantum field theory. In this approach the time evolution of quantum field systems is treated in real time and at the amplitude level. A s a test application, we apply this method to QED and study photon emission from an electron in a strong, time-dependent external field. Coherent superposition of electron acceleration and photon emission is observed in the nonperturbative regime.
In this work we address systems described by time-dependent non-Hermitian Hamiltonians under time-dependent Dyson maps. We shown that when starting from a given time-dependent non-Hermitian Hamiltonian which is not itself an observable, an infinite c hain of gauge linked time-dependent non-observable non-Hermitian Hamiltonians can be derived from it. The matrix elements of the observables associated with all these non observable Hamiltonians are, however, all linked to each other, and in the particular case where global gauges exist, these matrix elements becomes all identical to each other. In this case, therefore, by approaching whatever the Hamiltonian in the chain we can get information about any other Hamiltonian. We then show that the whole chain of time-dependent non-Hermitian Hamiltonians collapses to a single time-dependent non-Hermitian Hamiltonian when, under particular choices for the time-dependent Dyson maps, the observability of the Hamiltonians is assured. This collapse thus shows that the observability character of a non-Hermitian Hamiltonian prevents the construction of the gauge-linked Hamiltonian chain and, consequently, the possibility of approaching one Hamiltonian from another.
79 - Z. Xiao , E. Doucet , T. Noh 2021
We present a systematic method to implement a perturbative Hamiltonian diagonalization based on the time-dependent Schrieffer-Wolff transformation. Applying our method to strong parametric interactions we show how, even in the dispersive regime, full Rabi model physics is essential to describe the dressed spectrum. Our results unveil several qualitatively new results including realization of large energy-level shifts, tunable in magnitude and sign with the frequency and amplitude of the pump mediating the parametric interaction. Crucially Bloch-Siegert shifts, typically thought to be important only in the ultra-strong or deep-strong coupling regimes, can be rendered large even for weak dispersive interactions to realize points of exact cancellation of dressed shifts (`blind spots) at specific pump frequencies. The framework developed here highlights the rich physics accessible with time-dependent interactions and serves to significantly expand the functionalities for control and readout of strongly-interacting quantum systems.
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint repres entation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
We compute the energy spectrum of gluelumps defined as gluonic excitations bound to a localized, static octet source. We are able to reproduce the nontrivial ordering of the spin-parity levels and show how this is related to the non-abelian part of the Coulomb interaction between color charges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا