ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Augmentation Methods for End-to-end Speech Recognition on Distant-Talk Scenarios

71   0   0.0 ( 0 )
 نشر من قبل Emiru Tsunoo
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Although end-to-end automatic speech recognition (E2E ASR) has achieved great performance in tasks that have numerous paired data, it is still challenging to make E2E ASR robust against noisy and low-resource conditions. In this study, we investigated data augmentation methods for E2E ASR in distant-talk scenarios. E2E ASR models are trained on the series of CHiME challenge datasets, which are suitable tasks for studying robustness against noisy and spontaneous speech. We propose to use three augmentation methods and thier combinations: 1) data augmentation using text-to-speech (TTS) data, 2) cycle-consistent generative adversarial network (Cycle-GAN) augmentation trained to map two different audio characteristics, the one of clean speech and of noisy recordings, to match the testing condition, and 3) pseudo-label augmentation provided by the pretrained ASR module for smoothing label distributions. Experimental results using the CHiME-6/CHiME-4 datasets show that each augmentation method individually improves the accuracy on top of the conventional SpecAugment; further improvements are obtained by combining these approaches. We achieved 4.3% word error rate (WER) reduction, which was more significant than that of the SpecAugment, when we combine all three augmentations for the CHiME-6 task.



قيم البحث

اقرأ أيضاً

Silent speech interfaces (SSI) has been an exciting area of recent interest. In this paper, we present a non-invasive silent speech interface that uses inaudible acoustic signals to capture peoples lip movements when they speak. We exploit the speake r and microphone of the smartphone to emit signals and listen to their reflections, respectively. The extracted phase features of these reflections are fed into the deep learning networks to recognize speech. And we also propose an end-to-end recognition framework, which combines the CNN and attention-based encoder-decoder network. Evaluation results on a limited vocabulary (54 sentences) yield word error rates of 8.4% in speaker-independent and environment-independent settings, and 8.1% for unseen sentence testing.
Practitioners often need to build ASR systems for new use cases in a short amount of time, given limited in-domain data. While recently developed end-to-end methods largely simplify the modeling pipelines, they still suffer from the data sparsity iss ue. In this work, we explore a few simple-to-implement techniques for building online ASR systems in an end-to-end fashion, with a small amount of transcribed data in the target domain. These techniques include data augmentation in the target domain, domain adaptation using models previously trained on a large source domain, and knowledge distillation on non-transcribed target domain data, using an adapted bi-directional model as the teacher; they are applicable in real scenarios with different types of resources. Our experiments demonstrate that each technique is independently useful in the improvement of the online ASR performance in the target domain.
319 - Qi Liu , Zhehuai Chen , Hao Li 2020
End-to-end (E2E) systems have played a more and more important role in automatic speech recognition (ASR) and achieved great performance. However, E2E systems recognize output word sequences directly with the input acoustic feature, which can only be trained on limited acoustic data. The extra text data is widely used to improve the results of traditional artificial neural network-hidden Markov model (ANN-HMM) hybrid systems. The involving of extra text data to standard E2E ASR systems may break the E2E property during decoding. In this paper, a novel modular E2E ASR system is proposed. The modular E2E ASR system consists of two parts: an acoustic-to-phoneme (A2P) model and a phoneme-to-word (P2W) model. The A2P model is trained on acoustic data, while extra data including large scale text data can be used to train the P2W model. This additional data enables the modular E2E ASR system to model not only the acoustic part but also the language part. During the decoding phase, the two models will be integrated and act as a standard acoustic-to-word (A2W) model. In other words, the proposed modular E2E ASR system can be easily trained with extra text data and decoded in the same way as a standard E2E ASR system. Experimental results on the Switchboard corpus show that the modular E2E model achieves better word error rate (WER) than standard A2W models.
167 - Wei Liu , Tan Lee 2021
Confidence measure is a performance index of particular importance for automatic speech recognition (ASR) systems deployed in real-world scenarios. In the present study, utterance-level neural confidence measure (NCM) in end-to-end automatic speech r ecognition (E2E ASR) is investigated. The E2E system adopts the joint CTC-attention Transformer architecture. The prediction of NCM is formulated as a task of binary classification, i.e., accept/reject the input utterance, based on a set of predictor features acquired during the ASR decoding process. The investigation is focused on evaluating and comparing the efficacies of predictor features that are derived from different internal and external modules of the E2E system. Experiments are carried out on children speech, for which state-of-the-art ASR systems show less than satisfactory performance and robust confidence measure is particularly useful. It is noted that predictor features related to acoustic information of speech play a more important role in estimating confidence measure than those related to linguistic information. N-best score features show significantly better performance than single-best ones. It has also been shown that the metrics of EER and AUC are not appropriate to evaluate the NCM of a mismatched ASR with significant performance gap.
End-to-end acoustic speech recognition has quickly gained widespread popularity and shows promising results in many studies. Specifically the joint transformer/CTC model provides very good performance in many tasks. However, under noisy and distorted conditions, the performance still degrades notably. While audio-visual speech recognition can significantly improve the recognition rate of end-to-end models in such poor conditions, it is not obvious how to best utilize any available information on acoustic and visual signal quality and reliability in these models. We thus consider the question of how to optimally inform the transformer/CTC model of any time-variant reliability of the acoustic and visual information streams. We propose a new fusion strategy, incorporating reliability information in a decision fusion net that considers the temporal effects of the attention mechanism. This approach yields significant improvements compared to a state-of-the-art baseline model on the Lip Reading Sentences 2 and 3 (LRS2 and LRS3) corpus. On average, the new system achieves a relative word error rate reduction of 43% compared to the audio-only setup and 31% compared to the audiovisual end-to-end baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا