ترغب بنشر مسار تعليمي؟ اضغط هنا

Late time acceleration due to generic modification of gravity and Hubble tension

67   0   0.0 ( 0 )
 نشر من قبل Mayukh Gangopadhyay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a scenario of modified gravity, which is generic to late-time acceleration, namely, acceleration in the Jordan frame and no acceleration in the Einstein frame. The possibility is realized by assuming an interaction between dark matter and the baryonic component in the Einstein frame which is removed by going to the Jordan frame using a disformal transformation giving rise to an exotic effective fluid responsible for causing phantom crossing at late times. In this scenario, past evolution is not distinguished from $Lambda$CDM but late time dynamics is generically different due to the presence of phantom crossing that causes a monotonous increase in the expansion rate giving rise to distinctive late-time cosmic feature. The latter can play a crucial role in addressing the tension between the observed value of Hubble parameter by CMB (Cosmic Microwave Background) measurements and the local observations. We demonstrate that the Hubble tension significantly reduces in the scenario under consideration for the chosen scale factor parametrizations. The estimated age of the universe in the model is well within the observational bounds in the low and high red-shift regimes.

قيم البحث

اقرأ أيضاً

We use a combination of observational data in order to reconstruct the free function of f(T) gravity in a model-independent manner. Starting from the data-driven determined dark-energy equation-of-state parameter we are able to reconstruct the f(T) f orm. The obtained function is consistent with the standard {Lambda}CDM cosmology within 1{sigma} confidence level, however the best-fit value experiences oscillatory features. We parametrise it with a sinusoidal function with only one extra parameter comparing to {Lambda}CDM paradigm, which is a small oscillatory deviation from it, close to the best-fit curve, and inside the 1{sigma} reconstructed region. Similar oscillatory dark-energy scenarios are known to be in good agreement with observational data, nevertheless this is the first time that such a behavior is proposed for f(T) gravity. Finally, since the reconstruction procedure is completely model-independent, the obtained data-driven reconstructed f(T) form could release the tensions between {Lambda}CDM estimations and local measurements, such as the H0 and {sigma}8 ones.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C MB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt hough similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes a nd considering the evolution of the model at the level of linear perturbations. This model introduces a free parameter $Delta$ that can discriminate between the $Lambda$CDM (corresponds to $Delta=0$) or the phenomenologically emergent dark energy (PEDE) (corresponds to $Delta=1$) models, allowing us to determine which model is preferred most by the fit of the observational datasets. We find evidence in favor of the GEDE model for Planck alone and in combination with R19, while the Bayesian model comparison is inconclusive when Supernovae Type Ia or BAO data are included. In particular, we find that $Lambda$CDM model is disfavored at more than $2sigma$ CL for most of the observational datasets considered in this work and PEDE is in agreement with Planck 2018+BAO+R19 combination within $1sigma$ CL.
We re-analyze the Cepheid data used to infer the value of $H_0$ by calibrating SnIa. We do not enforce a universal value of the empirical Cepheid calibration parameters $R_W$ (Cepheid Wesenheit color-luminosity parameter) and $M_H^{W}$ (Cepheid Wesen heit H-band absolute magnitude). Instead, we allow for variation of either of these parameters for each individual galaxy. We also consider the case where these parameters have two universal values: one for low galactic distances $D<D_c$ and one for high galactic distances $D>D_c$ where $D_c$ is a critical transition distance. We find hints for a $3sigma$ level mismatch between the low and high galactic distance parameter values. We then use AIC and BIC criteria to compare and rank the following types of models: Base models: Universal values for $R_W$ and $M_H^{W}$ (no parameter variation), I Individual fitted galactic $R_W$ with a universal fitted $M_H^{W}$, II Universal fixed $R_W$ with individual fitted galactic $M_H^{W}$, III Universal fitted $R_W$ with individual fitted galactic $M_H^{W}$, IV Two universal fitted $R_W$ (near and far) with one universal fitted $M_H^{W}$, V Universal fitted $R_W$ with two universal fitted $M_H^{W}$ (near and far), VI Two universal fitted $R_W$ with two universal fitted $M_H^{W}$ (near and far). We find that the AIC and BIC criteria consistently favor model IV instead of the commonly used Base model where no variation is allowed for the Cepheid empirical parameters. The best fit value of the SnIa absolute magnitude $M_B$ and of $H_0$ implied by the favored model IV is consistent with the inverse distance ladder calibration based on the CMB sound horizon $H_0=67.4pm 0.5,km,s^{-1},Mpc^{-1}$. Thus in the context of the favored model IV the Hubble crisis is not present. This model may imply the presence of a fundamental physics transition taking place at a time more recent than $100,Myrs$ ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا