ﻻ يوجد ملخص باللغة العربية
Depth estimation is a fundamental issue in 4-D light field processing and analysis. Although recent supervised learning-based light field depth estimation methods have significantly improved the accuracy and efficiency of traditional optimization-based ones, these methods rely on the training over light field data with ground-truth depth maps which are challenging to obtain or even unavailable for real-world light field data. Besides, due to the inevitable gap (or domain difference) between real-world and synthetic data, they may suffer from serious performance degradation when generalizing the models trained with synthetic data to real-world data. By contrast, we propose an unsupervised learning-based method, which does not require ground-truth depth as supervision during training. Specifically, based on the basic knowledge of the unique geometry structure of light field data, we present an occlusion-aware strategy to improve the accuracy on occlusion areas, in which we explore the angular coherence among subsets of the light field views to estimate initial depth maps, and utilize a constrained unsupervised loss to learn their corresponding reliability for final depth prediction. Additionally, we adopt a multi-scale network with a weighted smoothness loss to handle the textureless areas. Experimental results on synthetic data show that our method can significantly shrink the performance gap between the previous unsupervised method and supervised ones, and produce depth maps with comparable accuracy to traditional methods with obviously reduced computational cost. Moreover, experiments on real-world datasets show that our method can avoid the domain shift problem presented in supervised methods, demonstrating the great potential of our method.
In this paper, we proposed an unsupervised learning method for estimating the optical flow between video frames, especially to solve the occlusion problem. Occlusion is caused by the movement of an object or the movement of the camera, defined as whe
Recently, significant progress has been made in single-view depth estimation thanks to increasingly large and diverse depth datasets. However, these datasets are largely limited to specific application domains (e.g. indoor, autonomous driving) or sta
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training and enables the scale-consistent prediction at inference time. Our contributions include: (i) we propose a geometry consistency loss, which penalizes
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide e
Estimating geometric elements such as depth, camera motion, and optical flow from images is an important part of the robots visual perception. We use a joint self-supervised method to estimate the three geometric elements. Depth network, optical flow