ترغب بنشر مسار تعليمي؟ اضغط هنا

Extraordinary transverse spin: Hidden vorticity of the energy flow and momentum distributions in propagating light fields

106   0   0.0 ( 0 )
 نشر من قبل Aleksandr Bekshaev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatially inhomogeneous fields of electromagnetic guided modes exhibit a complex of extraordinary dynamical properties such as the polarization-dependent transverse momentum, helicity-independent transverse spin, spin-associated non-reciprocity and unidirectional propagation, etc. Recently, the remarkable relationship has been established between the spin and propagation features of such fields, expressed through the spin-momentum equations [Proc. Natl. Acad. Sci. 118 (2021) e2018816118] connecting the wave spin with the curl of momentum. Here, the meaning, limitations and specific forms of this correspondence are further investigated, involving the physically transparent and consistent examples of paraxial light fields, plane-wave superpositions and evanescent waves. The conclusion is inferred that the spin-momentum equation is an attribute of guided waves with well defined direction of propagation, and it unites the helicity-independent extraordinary transverse spin with the spatially-inhomogeneous longitudinal field momentum (energy flow) density. Physical analogies with the layered hydrodynamic flows and possible generalizations for other wave fields are discussed. The results can be useful in optical trapping, manipulation and the data processing techniques.



قيم البحث

اقرأ أيضاً

When structured light is propagated through the atmosphere, turbulence results in modal scattering and distortions. An extensively studied example is that of light carrying orbital angular momentum (OAM), where the atmosphere is treated as a phase di stortion and numerical tools extract the resulting modal cross-talk. This approach focuses on the light itself, perturbed by the atmosphere, yet does not easily lend itself to physical insights, and fails to ask a pertinent question: where did the OAM that the beam gained or lost come from? Here, we address this by forgoing the beam and instead calculating the OAM of the atmosphere itself. With this intuitive model we are able to draw general conclusions on the impact of atmospheric turbulence on OAM beams, which we confirm experimentally. Our work alters the perspective on this problem, opening new insights into the physics of OAM in turbulence, and is easily extended to other structured light fields through arbitrary aberrations.
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are d ominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components can be controllably enhanced by exploiting the interference of the transverse electric and transverse magnetic scattering modes.
115 - Peng Shi , Luping Du , Congcong Li 2019
Quantum spin-Hall effect, a manifestation of topological properties that govern the behavior of surface states, was studied intensively in condensed matter physics resulting in the discovery of topological insulators. The quantum spin-Hall effect of light was introduced for surface plane-waves which intrinsically carry transverse optical spin, leading to many intriguing phenomena and applications in unidirectional waveguiding, metrology and quantum technologies. In addition to spin, optical waves can exhibit complex topological properties of vectorial electromagnetic fields, associated with orbital angular momentum or nonuniform intensity variations. Here, by considering both spin and angular momentum, we demonstrate a generalized spin-momentum relationship that governs vectorial properties of guided electromagnetic waves, extending optical quantum spin-Hall effect to a two-dimensional vector field of structured guided wave. The effect results in the appearance of the out-of-plane transverse optical spins, which vary progressively from the up state to the down state around the energy flow, and their variation is uniquely locked to the energy propagation direction. The related spin-momentum locking in a chiral spin swirl is demonstrated with four kinds of surface structured waves and proven both theoretically and experimentally. The results provide understanding of the spin dynamics in electromagnetic guided waves and show great importance in spin optics, topological photonics and optical spin-based devices and techniques.
Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize th e dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase variation that is the origin of its characteristic non-zero orbital angular momentum. The key point is to make use of the transversal Doppler effect of the returned signal that depends only on the azimuthal component of the flow velocity along the ring-shaped observation beam. We found from a detailed analysis of the experimental method that probing the fluid with LG beams is an effective and simple sensing technique capable to produce accurate estimates of flow vorticity.
We analyze the electromagnetic field near a plane interface between a conductive and a dielectric media, under conditions supporting surface plasmon-polariton (SPP) propagation. The conductive medium is described by the hydrodynamic electron-gas mode l that enables a consistent analysis of the field-induced variations of the electron density and velocity at the interface and its nearest vicinity. The distributions of electromagnetic dynamical characteristics: energy, energy flow, spin and momentum are calculated analytically and illustrated numerically, employing silver-vacuum interface as an example. A set of the field and material contributions to the energy, spin and momentum are explicitly identified and classified with respect to their physical origins and properties, and the orbital (canonical) and spin (Belinfante) momentum constituents are separately examined. In this context, a procedure for the spin-orbital momentum decomposition in the presence of free charges is proposed and substantiated. The microscopic results agree with the known phenomenological data but additionally show specific nanoscale structures in the near-interface behavior of the SPP energy and momentum, which can be deliberately created, controlled and used in nanotechnology applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا