ﻻ يوجد ملخص باللغة العربية
Let $Lambda$ be the set of partitions of length $geq 0$. We introduce an $mathbb{N}$-graded algebra $mathbb{A}_q^d(Lambda)$ associated to $Lambda$, which can be viewed as a quantization of the algebra of partitions defined by Reineke. The multiplication of $mathbb{A}^d_q(Lambda)$ has some kind of quasi-commutativity, and the associativity comes from combinatorial properties of certain polynomials appeared in the quantized cohomological Hall algebra $mathcal{H}^d_q$ of the $d$-loop quiver. It turns out that $mathbb{A}^d_q(Lambda)$ is isomorphic to $mathcal{H}^d_q$, thus can be viewed as a combinatorial realization for $mathcal{H}^d_q$.
We show that the generic Hall algebra of nilpotent representations of an oriented cycle specialised at $q=0$ is isomorphic to the generic extension monoid in the sense of Reineke. This continues the work of Reineke.
In this note we give a version of Hao Huangs proof of the sensitivity conjecture, shedding some light on the origin of the magical matrix $A$ in that proof. For the history of the subject and the importance of this conjecture to the study of boolean
The canonical bases of cluster algebras of finite types and rank 2 are given explicitly in cite{CK2005} and cite{SZ} respectively. In this paper, we will deduce $mathbb{Z}$-bases for cluster algebras for affine types $widetilde{A}_{n,n},widetilde{D}$
We show that the $imath$Hall algebra of the Jordan quiver is a polynomial ring in infinitely many generators and obtain transition relations among several generating sets. We establish a ring isomorphism from this $imath$Hall algebra to the ring of s
We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra indu