ﻻ يوجد ملخص باللغة العربية
Ultrasound computed tomography (USCT) is an emerging imaging modality for breast imaging that can produce quantitative images that depict the acoustic properties of tissues. Computer-simulation studies, also known as virtual imaging trials, provide researchers with an economical and convenient route to systematically explore imaging system designs and image reconstruction methods. When simulating an imaging technology intended for clinical use, it is essential to employ realistic numerical phantoms that can facilitate the objective, or task-based, assessment of image quality. Moreover, when computing objective image quality measures, an ensemble of such phantoms should be employed that display the variability in anatomy and object properties that is representative of the to-be-imaged patient cohort. Such stochastic phantoms for clinically relevant applications of USCT are currently lacking. In this work, a methodology for producing realistic three-dimensional (3D) numerical breast phantoms for enabling clinically relevant computer-simulation studies of USCT breast imaging is presented. By extending and adapting an existing stochastic 3D breast phantom for use withUSCT, methods for creating ensembles of numerical acoustic breast phantoms are established. These breast phantoms will possess clinically relevant variations in breast size, composition, acoustic properties, tumor locations, and tissue textures. To demonstrate the use of the phantoms in virtual USCT studies, two brief case studies are presented that address the development and assessment of image reconstruction procedures. Examples of breast phantoms produced by use of the proposed methods and a collection of 52 sets of simulated USCT measurement data have been made open source for use in image reconstruction development
Objective: Realistic tissue-mimicking phantoms are essential for the development, the investigation and the calibration of medical imaging techniques and protocols. Because it requires taking both mechanical and imaging properties into account, the d
A potential application for spectral computed tomography (CT) with multi-energy-window photon-counting detectors is quantitative medical imaging with K-edge contrast agents. Image reconstruction for spectral CT with such contrast agents necessitates
The purpose of this work is to develop viable procedures for verifying the applicability of personalized dosimetry in computed tomography (CT) using Monte Carlo-based simulations. Mobile equipment together with customized software was developed and u
A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system
Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of th