ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Science with ORCAS: Faint Star-Forming Clumps to AB$leq$31 mag and r$_e$$geq$ 0.01

64   0   0.0 ( 0 )
 نشر من قبل Scott Tompkins
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NASA concept mission ORCAS (Orbiting Configurable Artificial Star) aims to provide near diffraction-limited angular resolution at visible and near-infrared wavelengths using laser signals from space-based cubesats as Adaptive Optics beacons for ground-based 8-30 meter telescopes, in particular the 10 meter Keck Telescopes. When built as designed, ORCAS+Keck would deliver images of ~0.01-0.02 FWHM at 0.5-1.2 micron wavelength that reach AB<31 mag for point sources in a few hours over a 5x5 FOV that includes IFU capabilities. We summarize the potential of high-resolution faint galaxy science with ORCAS. We show that the ability to detect optical-near-IR point sources with r_e>0.01 FWHM to AB<31 mag will yield about 5.0x10^6 faint star-forming (SF) clumps per square degree, or ~0.4 per arcsec^2. From recent HST lensing data, the typical intrinsic (unlensed) sizes of SF clumps at z~1-7 will be r_e ~1-80 m.a.s. to AB<31 mag, with intrinsic (unmagnified) fluxes as faint as AB<35-36 mag when searching with ORCAS around the critical curves of lensing clusters imaged with HST and JWST. About half of these SF clumps will have sizes below the ORCAS diffraction limit, and the other half will be slightly resolved, but still mostly above the ORCAS surface brightness (SB) limits. ORCAS will address how galaxies assemble from smaller clumps to stable disks by measuring ages, metallicities, and gradients of clumps within galaxies. ORCAS can monitor caustic transits of individual stars in SF clumps at z>1-2 that have been detected with HST, and those that may be detected with JWST at z>6 at extreme magnifications (mu>10^3-10^5) for the first stars and their stellar mass black hole accretion disks. ORCAS provides a unique opportunity to obtain a statistical census of individual stars at cosmological distances, leveraging the largest telescopes only available on the ground.

قيم البحث

اقرأ أيضاً

With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravita tional lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.$_{2000}$ = 09$^h$ 19$^m$32.4$^s$ and Decl.$_{2000}$ = +30$^{circ}$00$^{prime}$00$^{primeprime}$). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg$^2$ F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is $ z = 0.3$; the survey provides a view of structure in the range 0.1 $ lesssim z lesssim 0.6$. A movie displays the large-scale structure in the survey region. We provide a redshift, spectral index D$_n$4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2 $< z <0. 38$. To demonstrate potential applications of the survey, we examine the behavior of the index D$_n$4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), w e obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, HII or photo-dissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, HII and PDR stages are 41.2%, 36.6%, 30.6% and 12.7%, respectively. The infall candidates have a higher H$_{2}$ column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, HII and PDR stages are 2.6$times$10$^{-3}$, 7.0$times$10$^{-3}$, 6.5$times$10$^{-3}$ and 5.5$times$10$^{-3}$ M$_odot$ yr$^{-1}$, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the HII stages. The power indices of the clump mass function (ClMF) are 2.04$pm$0.16 and 2.17$pm$0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).
We have identified 1027 star forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in $8rm{mu m} $ observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution (SED) of our clumps with the Code Investigating GALaxy Emission (CIGALE) using a double exponentially declined star formation history (SFH). We derive SFRs, stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an AGN for these clumps. The resolved star formation main sequence holds on 2.5kpc scales, although it does not hold on 1kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that SFR is enhanced through the disk and in the tidal features relative to normal spirals.
For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are str ongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.Three 218 GHz transitions (JKAKC=303-202, 322-221, and 321-220) of para-H2CO were observed with the 15m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202and 321-220/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2,2)/(1,1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2,2)/(1,1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا