ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Supervised Learning of Domain Invariant Features for Depth Estimation

117   0   0.0 ( 0 )
 نشر من قبل Hiroyasu Akada
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We tackle the problem of unsupervised synthetic-to-realistic domain adaptation for single image depth estimation. An essential building block of single image depth estimation is an encoder-decoder task network that takes RGB images as input and produces depth maps as output. In this paper, we propose a novel training strategy to force the task network to learn domain invariant representations in a self-supervised manner. Specifically, we extend self-supervised learning from traditional representation learning, which works on images from a single domain, to domain invariant representation learning, which works on images from two different domains by utilizing an image-to-image translation network. Firstly, we use our bidirectional image-to-image translation network to transfer domain-specific styles between synthetic and real domains. This style transfer operation allows us to obtain similar images from the different domains. Secondly, we jointly train our task network and Siamese network with the same images from the different domains to obtain domain invariance for the task network. Finally, we fine-tune the task network using labeled synthetic and unlabeled real-world data. Our training strategy yields improved generalization capability in the real-world domain. We carry out an extensive evaluation on two popular datasets for depth estimation, KITTI and Make3D. The results demonstrate that our proposed method outperforms the state-of-the-art both qualitatively and quantitatively. The source code and model weights will be made available.



قيم البحث

اقرأ أيضاً

Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades for all-day images due to large domain shift and the variation of illumination between day and night images. To relieve these limitations, we propose a domain-separated network for self-supervised depth estimation of all-day images. Specifically, to relieve the negative influence of disturbing terms (illumination, etc.), we partition the information of day and night image pairs into two complementary sub-spaces: private and invariant domains, where the former contains the unique information (illumination, etc.) of day and night images and the latter contains essential shared information (texture, etc.). Meanwhile, to guarantee that the day and night images contain the same information, the domain-separated network takes the day-time images and corresponding night-time images (generated by GAN) as input, and the private and invariant feature extractors are learned by orthogonality and similarity loss, where the domain gap can be alleviated, thus better depth maps can be expected. Meanwhile, the reconstruction and photometric losses are utilized to estimate complementary information and depth maps effectively. Experimental results demonstrate that our approach achieves state-of-the-art depth estimation results for all-day images on the challenging Oxford RobotCar dataset, proving the superiority of our proposed approach.
Training deep networks for semantic segmentation requires large amounts of labeled training data, which presents a major challenge in practice, as labeling segmentation masks is a highly labor-intensive process. To address this issue, we present a fr amework for semi-supervised and domain-adaptive semantic segmentation, which is enhanced by self-supervised monocular depth estimation (SDE) trained only on unlabeled image sequences. In particular, we utilize SDE as an auxiliary task comprehensively across the entire learning framework: First, we automatically select the most useful samples to be annotated for semantic segmentation based on the correlation of sample diversity and difficulty between SDE and semantic segmentation. Second, we implement a strong data augmentation by mixing images and labels using the geometry of the scene. Third, we transfer knowledge from features learned during SDE to semantic segmentation by means of transfer and multi-task learning. And fourth, we exploit additional labeled synthetic data with Cross-Domain DepthMix and Matching Geometry Sampling to align synthetic and real data. We validate the proposed model on the Cityscapes dataset, where all four contributions demonstrate significant performance gains, and achieve state-of-the-art results for semi-supervised semantic segmentation as well as for semi-supervised domain adaptation. In particular, with only 1/30 of the Cityscapes labels, our method achieves 92% of the fully-supervised baseline performance and even 97% when exploiting additional data from GTA. The source code is available at https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth.
In the recent years, many methods demonstrated the ability of neural networks tolearn depth and pose changes in a sequence of images, using only self-supervision as thetraining signal. Whilst the networks achieve good performance, the often over-look eddetail is that due to the inherent ambiguity of monocular vision they predict depth up to aunknown scaling factor. The scaling factor is then typically obtained from the LiDARground truth at test time, which severely limits practical applications of these methods.In this paper, we show that incorporating prior information about the camera configu-ration and the environment, we can remove the scale ambiguity and predict depth directly,still using the self-supervised formulation and not relying on any additional sensors.
In self-supervised monocular depth estimation, the depth discontinuity and motion objects artifacts are still challenging problems. Existing self-supervised methods usually utilize a single view to train the depth estimation network. Compared with st atic views, abundant dynamic properties between video frames are beneficial to refined depth estimation, especially for dynamic objects. In this work, we propose a novel self-supervised joint learning framework for depth estimation using consecutive frames from monocular and stereo videos. The main idea is using an implicit depth cue extractor which leverages dynamic and static cues to generate useful depth proposals. These cues can predict distinguishable motion contours and geometric scene structures. Furthermore, a new high-dimensional attention module is introduced to extract clear global transformation, which effectively suppresses uncertainty of local descriptors in high-dimensional space, resulting in a more reliable optimization in learning framework. Experiments demonstrate that the proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
We present a generalised self-supervised learning approach for monocular estimation of the real depth across scenes with diverse depth ranges from 1--100s of meters. Existing supervised methods for monocular depth estimation require accurate depth me asurements for training. This limitation has led to the introduction of self-supervised methods that are trained on stereo image pairs with a fixed camera baseline to estimate disparity which is transformed to depth given known calibration. Self-supervised approaches have demonstrated impressive results but do not generalise to scenes with different depth ranges or camera baselines. In this paper, we introduce RealMonoDepth a self-supervised monocular depth estimation approach which learns to estimate the real scene depth for a diverse range of indoor and outdoor scenes. A novel loss function with respect to the true scene depth based on relative depth scaling and warping is proposed. This allows self-supervised training of a single network with multiple data sets for scenes with diverse depth ranges from both stereo pair and in the wild moving camera data sets. A comprehensive performance evaluation across five benchmark data sets demonstrates that RealMonoDepth provides a single trained network which generalises depth estimation across indoor and outdoor scenes, consistently outperforming previous self-supervised approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا