ﻻ يوجد ملخص باللغة العربية
Simple binary-state coordination models are widely used to study collective socio-economic phenomena such as the spread of innovations or the adoption of products on social networks. The common trait of these systems is the occurrence of large-scale coordination events taking place abruptly, in the form of a cascade process, as a consequence of small perturbations of an apparently stable state. The conditions for the occurrence of cascade instabilities have been largely analysed in the literature, however for the same coordination models no sufficient attention was given to the relation between structural properties of (Nash) equilibria and possible outcomes of dynamical equilibrium selection. Using methods from the statistical physics of disordered systems, the present work investigates both analytically and numerically, the statistical properties of such Nash equilibria on networks, focusing mostly on random graphs. We provide an accurate description of these properties, which is then exploited to shed light on the mechanisms behind the onset of coordination/miscoordination on large networks. This is done studying the most common processes of dynamical equilibrium selection, such as best response, bounded-rational dynamics and learning processes. In particular, we show that well beyond the instability region, full coordination is still globally stochastically stable, however equilibrium selection processes with low stochasticity (e.g. best response) or strong memory effects (e.g. reinforcement learning) can be prevented from achieving full coordination by being trapped into a large (exponentially in number of agents) set of locally stable Nash equilibria at low/medium coordination (inefficient equilibria). These results should be useful to allow a better understanding of general coordination problems on complex networks.
A wide class of binary-state dynamics on networks---including, for example, the voter model, the Bass diffusion model, and threshold models---can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges t
We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the sy
For many complex networks present in nature only a single instance, usually of large size, is available. Any measurement made on this single instance cannot be repeated on different realizations. In order to detect significant patterns in a real--wor
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of e