ﻻ يوجد ملخص باللغة العربية
Reference-based image super-resolution (RefSR) has shown promising success in recovering high-frequency details by utilizing an external reference image (Ref). In this task, texture details are transferred from the Ref image to the low-resolution (LR) image according to their point- or patch-wise correspondence. Therefore, high-quality correspondence matching is critical. It is also desired to be computationally efficient. Besides, existing RefSR methods tend to ignore the potential large disparity in distributions between the LR and Ref images, which hurts the effectiveness of the information utilization. In this paper, we propose the MASA network for RefSR, where two novel modules are designed to address these problems. The proposed Match & Extraction Module significantly reduces the computational cost by a coarse-to-fine correspondence matching scheme. The Spatial Adaptation Module learns the difference of distribution between the LR and Ref images, and remaps the distribution of Ref features to that of LR features in a spatially adaptive way. This scheme makes the network robust to handle different reference images. Extensive quantitative and qualitative experiments validate the effectiveness of our proposed model.
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling fact
Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit cor
This paper proposes a novel Attention-based Multi-Reference Super-resolution network (AMRSR) that, given a low-resolution image, learns to adaptively transfer the most similar texture from multiple reference images to the super-resolution output whil
In the recent years impressive advances were made for single image super-resolution. Deep learning is behind a big part of this success. Deep(er) architecture design and external priors modeling are the key ingredients. The internal contents of the l
The recent success of NeRF and other related implicit neural representation methods has opened a new path for continuous image representation, where pixel values no longer need to be looked up from stored discrete 2D arrays but can be inferred from n