ﻻ يوجد ملخص باللغة العربية
We examine in this paper the possibility of finding exact solutions for Teleparallel Gravity (TG) of the type of spherically symmetric Lema^i tre-Tolman-Bondi (LTB) dust models. We apply to the LTB metric, as obtained from the Schwarzschild solution in General Relativity, the formalism of Teleparallel Gravity in its extension to $f(T,B)$ models. An exact LTB solution is obtained that is compatible with a specific $f(T,B)$ model that seems to be appropriate to fit observations when applied to standard spatially flat Robertson-Walker geometry.
We analyse the vacuum static spherically symmetric space-time for a specific class of non-conservative theories of gravity based on the Rastalls theory. We obtain a new vacuum solution which has the same structure as the Schwarzschild-de Sitter solut
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the
[Abridged] In its standard formulation, the $f(T)$ field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. A locally Lorentz covariant $f(T)$ gravity theo
With the advent of gravitational wave astronomy and first pictures of the shadow of the central black hole of our milky way, theoretical analyses of black holes (and compact objects mimicking them sufficiently closely) have become more important than