ﻻ يوجد ملخص باللغة العربية
We study the effects caused by Rashba and Dresselhaus spin-orbit coupling over the thermoelectric transport properties of a single-electron transistor, viz., a quantum dot connected to one-dimensional leads. Using linear response theory and employing the numerical renormalization group method, we calculate the thermopower, electrical and thermal conductances, dimensionless thermoelectric figure of merit, and study the Wiedemann-Franz law, showing their temperature maps. Our results for all those properties indicate that spin-orbit coupling drives the system into the Kondo regime. We show that the thermoelectric transport properties, in the presence of spin-orbit coupling, obey the expected universality of the Kondo strong coupling fixed point. In addition, our results show a notable increase in the thermoelectric figure of merit, caused by the spin-orbit coupling in the one-dimensional quantum dot leads.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric
In this note we summarize our recent results for the temperature dependence of transport coefficients of metallic films in the presence of spin-orbit coupling. Our focus is on (i) the spin Nernst and the thermal Edelstein effects, and (ii) the phonon
We estimate the triplet-singlet relaxation rate due to spin-orbit coupling assisted by phonon emission in weakly-confined quantum dots. Our results for two and four electrons show that the different triplet-singlet relaxation trends observed in recen
We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigat
The effect of an ac electric field on quantum transport properties in a system of three quantum dots, two of which are connected in parallel while the third is coupled to one of the other two, is investigated theoretically. Based on the Keldysh noneq