ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensegrity system dynamics based on finite element method

207   0   0.0 ( 0 )
 نشر من قبل Muhao Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This study presents a finite element analysis approach to non-linear and linearized tensegrity dynamics based on the Lagrangian method with nodal coordinate vectors as the generalized coordinates. In this paper, nonlinear tensegrity dynamics with and without constraints are first derived. The equilibrium equations in three standard forms (in terms of nodal coordinate, force density, and force vectors) and the compatibility equation are also given. Then, we present the linearized dynamics and modal analysis equations with and without constraints. The developed approach is capable of conducting the following comprehensive dynamics studies for any tensegrity structures accurately: 1. Performing rigid body dynamics with acceptable errors, which is achieved by setting relatively high stiffness for bars in the simulation. 2. Simulating FEM dynamics accurately, where bars and strings can have elastic or plastic deformations. 3. Dealing with various kinds of boundary conditions, for example, fixing or applying static/dynamic loads at any nodes in any direction (i.e., gravitational force, some specified forces, or arbitrary seismic vibrations). 4. Conducting accurate modal analysis, including natural frequency and corresponding modes. Three examples, a double pendulum, a cantilever truss with external force, and a double prism tensegrity tower, are carefully selected and studied. The results are compared with rigid body dynamics and FEM software ANSYS. This study provides a deep insight into structures, materials, performances, as well as an interface towards integrating control theories.



قيم البحث

اقرأ أيضاً

In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.
103 - M. Dov{s}kav{r} 2020
A recently introduced representation by a set of Wang tiles -- a generalization of the traditional Periodic Unit Cell based approach -- serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an effi cient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by the computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the Generalized Finite Element Method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than a 3% error in both the relative $L_2$ and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike the standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge on the macroscopic problem.
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete char acterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and no nlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element met hod proposed by Cai et al (1998) cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order -- possibly adapted -- spatial discretization for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا