ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon Acoustic Oscillations from Integrated Neutral Gas Observations: an instrument to observe the 21cm hydrogen line in the redshift range 0.13 $<$ z $<$ 0.45 -- status update

72   0   0.0 ( 0 )
 نشر من قبل Carlos Alexandre Wuensche
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BINGO (BAO from Integrated Neutral Gas Observations) is a unique radio telescope designed to map the intensity of neutral hydrogen distribution at cosmological distances, making the first detection of Baryon Acoustic Oscillations (BAO) in the frequency band 980 MHz - 1260 MHz, corresponding to a redshift range $0.127 < z < 0.449$. BAO is one of the most powerful probes of cosmological parameters and BINGO was designed to detect the BAO signal to a level that makes it possible to put new constraints on the equation of state of dark energy. The telescope will be built in Paraiba, Brazil and consists of two $thicksim$ 40m mirrors, a feedhorn array of 28 horns, and no moving parts, working as a drift-scan instrument. It will cover a $15^{circ}$ declination strip centered at $sim delta=-15^{circ}$, mapping $sim 5400$ square degrees in the sky. The BINGO consortium is led by University of S~ao Paulo with co-leadership at National Institute for Space Research and Campina Grande Federal University (Brazil). Telescope subsystems have already been fabricated and tested, and the dish and structure fabrication are expected to start in late 2020, as well as the road and terrain preparation.

قيم البحث

اقرأ أيضاً

Observations of the redshifted 21-cm line of neutral hydrogen (HI) are a new and powerful window of observation that offers us the possibility to map the spatial distribution of cosmic HI and learn about cosmology. BINGO (Baryon Acoustic Oscillations [BAO] from Integrated Neutral Gas Observations) is a new unique radio telescope designed to be one of the first to probe BAO at radio frequencies. BINGO has two science goals: cosmology and astrophysics. Cosmology is the main science goal and the driver for BINGOs design and strategy. The key of BINGO is to detect the low redshift BAO to put strong constraints in the dark sector models. Given the versatility of the BINGO telescope, a secondary goal is astrophysics, where BINGO can help discover and study Fast Radio Bursts (FRB) and other transients, Galactic and extragalactic science. In this paper, we introduce the latest progress of the BINGO project, its science goals, describing the scientific potential of the project in each science and the new developments obtained by the collaboration. We introduce the BINGO project and its science goals and give a general summary of recent developments in construction, science potential and pipeline development obtained by the BINGO collaboration in the past few years. We show that BINGO will be able to obtain competitive constraints for the dark sector, and also that will allow for the discovery of several FRBs in the southern hemisphere. The capacity of BINGO in obtaining information from 21-cm is also tested in the pipeline introduced here. There is still no measurement of the BAO in radio, and studying cosmology in this new window of observations is one of the most promising advances in the field. The BINGO project is a radio telescope that has the goal to be one of the first to perform this measurement and it is currently being built in the northeast of Brazil. (Abridged)
The Baryon acoustic oscillations from Integrated Neutral Gas Observations (BINGO) telescope is a 40-m~class radio telescope under construction that has been designed to measure the large-angular-scale intensity of HI emission at 980--1260 MHz and hen ce to constrain dark energy parameters. A large focal plane array comprising of 1.7-metre diameter, 4.3-metre length corrugated feed horns is required in order to optimally illuminate the telescope. Additionally, very clean beams with low sidelobes across a broad frequency range are required, in order to facilitate the separation of the faint HI emission from bright Galactic foreground emission. Using novel construction methods, a full-sized prototype horn has been assembled. It has an average insertion loss of around 0.15 dB across the band, with a return loss around -25 dB. The main beam is Gaussian with the first sidelobe at around $-25 dB. A septum polariser to separate the signal into the two hands of circular polarization has also been designed, built and tested.
319 - Z. Brown , G. Mishtaku , R. Demina 2020
The cosmic structure formed from Baryon Acoustic Oscillations (BAO) in the early universe is imprinted in the galaxy distribution observable in large scale surveys, and is used as a standard ruler in contemporary cosmology. BAO are typically detected as a preferential length scale in two point statistics, which gives little information about the location of BAO structures in real space. The aim of the algorithm described in this paper is to find probable centers of BAO in the cosmic matter distribution. The algorithm convolves the three dimensional distribution of matter density with a spherical shell kernel of variable radius placed at different locations. The locations that correspond to the highest values of the convolution correspond to the probable centers of BAO. This method is realized in an open-source, computationally efficient algorithm. We describe the algorithm and present the results of applying it to the SDSS DR9 CMASS survey and associated mock catalogs. A detailed performance study demonstrates the algorithms ability to locate BAO centers, and in doing so presents a novel detection of the BAO scale in galaxy surveys.
The Baryon acoustic oscillations from Integrated Neutral Gas Observations (BINGO) telescope is a new 40-m class radio telescope to measure the large-angular-scale intensity of Hi emission at 980-1260 MHz to constrain dark energy parameters. As it nee ds to measure faint cosmological signals at the milliKelvin level, it requires a site that has very low radio frequency interference (RFI) at frequencies around 1 GHz. We report on measurement campaigns across Uruguay and Brazil to find a suitable site, which looked at the strength of the mobile phone signals and other radio transmissions, the location of wind turbines, and also included mapping airplane flight paths. The site chosen for the BINGO telescope is a valley at Serra do Urubu, a remote part of Paraiba in North-East Brazil, which has sheltering terrain. During our measurements with a portable receiver we did not detect any RFI in or near the BINGO band, given the sensitivity of the equipment. A radio quiet zone around the selected site has been requested to the Brazilian authorities ahead of the telescope construction.
Evidence is presented that the galaxy distribution can be described as a fractal system in the redshift range of the FDF galaxy survey. The fractal dimension $D$ was derived using the FDF galaxy volume number densities in the spatially homogeneous st andard cosmological model with $Omega_{m_0}=0.3$, $Omega_{Lambda_0}=0.7$ and $H_0=70 ; mbox{km} ; {mbox{s}}^{-1} ; {mbox{Mpc}}^{-1}$. The ratio between the differential and integral number densities $gamma$ and $gamma^ast$ obtained from the red and blue FDF galaxies provides a direct method to estimate $D$, implying that $gamma$ and $gamma^ast$ vary as power-laws with the cosmological distances. The luminosity distance $d_{scriptscriptstyle L}$, galaxy area distance $d_{scriptscriptstyle G}$ and redshift distance $d_z$ were plotted against their respective number densities to calculate $D$ by linear fitting. It was found that the FDF galaxy distribution is characterized by two single fractal dimensions at successive distance ranges. Two straight lines were fitted to the data, whose slopes change at $z approx 1.3$ or $z approx 1.9$ depending on the chosen cosmological distance. The average fractal dimension calculated using $gamma^ast$ changes from $langle D rangle=1.4^{scriptscriptstyle +0.7}_{scriptscriptstyle -0.6}$ to $langle D rangle=0.5^{scriptscriptstyle +1.2}_{scriptscriptstyle -0.4}$ for all galaxies, and $D$ decreases as $z$ increases. Small values of $D$ at high $z$ mean that in the past galaxies were distributed much more sparsely and the large-scale galaxy structure was then possibly dominated by voids. Results of Iribarrem et al. (2014, arXiv:1401.6572) indicating similar fractal features with $langle D rangle =0.6 pm 0.1$ in the far-infrared sources of the Herschel/PACS evolutionary probe (PEP) at $1.5 lesssim z lesssim 3.2$ are also mentioned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا