ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing Rankings for Recommendation in Matching Markets

196   0   0.0 ( 0 )
 نشر من قبل Yi Su
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the success of recommender systems in e-commerce, there is growing interest in their use in matching markets (e.g., labor). While this holds potential for improving market fluidity and fairness, we show in this paper that naively applying existing recommender systems to matching markets is sub-optimal. Considering the standard process where candidates apply and then get evaluated by employers, we present a new recommendation framework to model this interaction mechanism and propose efficient algorithms for computing personalized rankings in this setting. We show that the optimal rankings need to not only account for the potentially divergent preferences of candidates and employers, but they also need to account for capacity constraints. This makes conventional ranking systems that merely rank by some local score (e.g., one-sided or reciprocal relevance) highly sub-optimal -- not only for an individual user, but also for societal goals (e.g., low unemployment). To address this shortcoming, we propose the first method for jointly optimizing the rankings for all candidates in the market to explicitly maximize social welfare. In addition to the theoretical derivation, we evaluate the method both on simulated environments and on data from a real-world networking-recommendation system that we built and fielded at a large computer science conference.



قيم البحث

اقرأ أيضاً

231 - Tao Qi , Fangzhao Wu , Chuhan Wu 2021
The most important task in personalized news recommendation is accurate matching between candidate news and user interest. Most of existing news recommendation methods model candidate news from its textual content and user interest from their clicked news in an independent way. However, a news article may cover multiple aspects and entities, and a user usually has different kinds of interest. Independent modeling of candidate news and user interest may lead to inferior matching between news and users. In this paper, we propose a knowledge-aware interactive matching method for news recommendation. Our method interactively models candidate news and user interest to facilitate their accurate matching. We design a knowledge-aware news co-encoder to interactively learn representations for both clicked news and candidate news by capturing their relatedness in both semantic and entities with the help of knowledge graphs. We also design a user-news co-encoder to learn candidate news-aware user interest representation and user-aware candidate news representation for better interest matching. Experiments on two real-world datasets validate that our method can effectively improve the performance of news recommendation.
User and item reviews are valuable for the construction of recommender systems. In general, existing review-based methods for recommendation can be broadly categorized into two groups: the siamese models that build static user and item representation s from their reviews respectively, and the interaction-based models that encode user and item dynamically according to the similarity or relationships of their reviews. Although the interaction-based models have more model capacity and fit human purchasing behavior better, several problematic model designs and assumptions of the existing interaction-based models lead to its suboptimal performance compared to existing siamese models. In this paper, we identify three problems of the existing interaction-based recommendation models and propose a couple of solutions as well as a new interaction-based model to incorporate review data for rating prediction. Our model implements a relevance matching model with regularized training losses to discover user relevant information from long item reviews, and it also adapts a zero attention strategy to dynamically balance the item-dependent and item-independent information extracted from user reviews. Empirical experiments and case studies on Amazon Product Benchmark datasets show that our model can extract effective and interpretable user/item representations from their reviews and outperforms multiple types of state-of-the-art review-based recommendation models.
We introduce the concept of emph{expected exposure} as the average attention ranked items receive from users over repeated samples of the same query. Furthermore, we advocate for the adoption of the principle of equal expected exposure: given a fixed information need, no item should receive more or less expected exposure than any other item of the same relevance grade. We argue that this principle is desirable for many retrieval objectives and scenarios, including topical diversity and fair ranking. Leveraging user models from existing retrieval metrics, we propose a general evaluation methodology based on expected exposure and draw connections to related metrics in information retrieval evaluation. Importantly, this methodology relaxes classic information retrieval assumptions, allowing a system, in response to a query, to produce a emph{distribution over rankings} instead of a single fixed ranking. We study the behavior of the expected exposure metric and stochastic rankers across a variety of information access conditions, including emph{ad hoc} retrieval and recommendation. We believe that measuring and optimizing expected exposure metrics using randomization opens a new area for retrieval algorithm development and progress.
Recently, using different channels to model social semantic information, and using self-supervised learning tasks to maintain the characteristics of each channel when fusing the information, which has been proven to be a very promising work. However, how to deeply dig out the relationship between different channels and make full use of it while maintaining the uniqueness of each channel is a problem that has not been well studied and resolved in this field. Under such circumstances, this paper explores and verifies the deficiency of directly constructing contrastive learning tasks on different channels with practical experiments and proposes the scheme of interactive modeling and matching representation across different channels. This is the first attempt in the field of recommender systems, we believe the insight of this paper is inspirational to future self-supervised learning research based on multi-channel information. To solve this problem, we propose a cross-channel matching representation model based on attentive interaction, which realizes efficient modeling of the relationship between cross-channel information. Based on this, we also proposed a hierarchical self-supervised learning model, which realized two levels of self-supervised learning within and between channels and improved the ability of self-supervised tasks to autonomously mine different levels of potential information. We have conducted abundant experiments, and many experimental metrics on multiple public data sets show that the method proposed in this paper has a significant improvement compared with the state-of-the-art methods, no matter in the general or cold-start scenario. And in the experiment of model variant analysis, the benefits of the cross-channel matching representation model and the hierarchical self-supervised model proposed in this paper are also fully verified.
We study dynamic matching in exchange markets with easy- and hard-to-match agents. A greedy policy, which attempts to match agents upon arrival, ignores the positive externality that waiting agents generate by facilitating future matchings. We prove that this trade-off between a ``thicker market and faster matching vanishes in large markets; A greedy policy leads to shorter waiting times, and more agents matched than any other policy. We empirically confirm these findings in data from the National Kidney Registry. Greedy matching achieves as many transplants as commonly-used policies (1.6% more than monthly-batching), and shorter patient waiting times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا