ﻻ يوجد ملخص باللغة العربية
Cyclic dominance of competing species is an intensively used working hypothesis to explain biodiversity in certain living systems, where the evolutionary selection principle would dictate a single victor otherwise. Technically the May--Leonard models offer a mathematical framework to describe the mentioned non-transitive interaction of competing species when individual movement is also considered in a spatial system. Emerging rotating spirals composed by the competing species are frequently observed character of the resulting patterns. But how do these spiraling patterns change when we vary the external environment which affects the general vitality of individuals? Motivated by this question we suggest an off-lattice version of the tradition May--Leonard model which allows us to change the actual state of the environment gradually. This can be done by introducing a local carrying capacity parameter which value can be varied gently in an off-lattice environment. Our results support a previous analysis obtained in a more intricate metapopulation model and we show that the well-known rotating spirals become evident in a benign environment when the general density of the population is high. The accompanying time-dependent oscillation of competing species can also be detected where the amplitude and the frequency show a scaling law of the parameter that characterizes the state of the environment. These observations highlight that the assumed non-transitive interaction alone is insufficient condition to maintain biodiversity safely, but the actual state of the environment, which characterizes the general living conditions, also plays a decisive role on the evolution of related systems.
We study the induction and stabilization of spiral structures for the cyclic three-species stochastic May-Leonard model with asymmetric predation rates on a spatially inhomogeneous two-dimensional toroidal lattice using Monte Carlo simulations. In an
Non-transitive dominance and the resulting cyclic loop of three or more competing species provide a fundamental mechanism to explain biodiversity in biological and ecological systems. Both Lotka-Volterra and May-Leonard type model approaches agree th
Exploring the possible consequences of spatial reciprocity on the evolution of cooperation is an intensively studied research avenue. Related works assumed a certain interaction graph of competing players and studied how particular topologies may inf
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solv
We revisit well-established concepts of epidemiology, the Ising-model, and percolation theory. Also, we employ a spin $S$ = 1/2 Ising-like model and a (logistic) Fermi-Dirac-like function to describe the spread of Covid-19. Our analysis reinforces we