ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational Analysis of Sensor Attacks on Cyber-Physical Systems

270   0   0.0 ( 0 )
 نشر من قبل Jian Xiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyber-physical systems, such as self-driving cars or autonomous aircraft, must defend against attacks that target sensor hardware. Analyzing system design can help engineers understand how a compromised sensor could impact the systems behavior; however, designing security analyses for cyber-physical systems is difficult due to their combination of discrete dynamics, continuous dynamics, and nondeterminism. This paper contributes a framework for modeling and analyzing sensor attacks on cyber-physical systems, using the formalism of hybrid programs. We formalize and analyze two relational properties of a systems robustness. These relational properties respectively express (1) whether a systems safety property can be influenced by sensor attacks, and (2) whether a systems high-integrity state can be affected by sensor attacks. We characterize these relational properties by defining an equivalence relation between a system under attack and the original unattacked system. That is, the system satisfies the robustness properties if executions of the attacked system are appropriately related to executions of the unattacked system. We present two techniques for reasoning about the equivalence relation and thus proving the relational properties for a system. One proof technique decomposes large proof obligations to smaller proof obligations. The other proof technique adapts the self-composition technique from the literature on secure information-flow, allowing us to reduce reasoning about the equivalence of two systems to reasoning about properties of a single system. This technique allows us to reuse existing tools for reasoning about properties of hybrid programs, but is challenging due to the combination of discrete dynamics, continuous dynamics, and nondeterminism. To evaluate, we present three case studies motivated by real design flaws in existing cyber-physical systems.

قيم البحث

اقرأ أيضاً

This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS (e.g., robotics), where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where parts of the runtime information are known to the attacker, and introduce two models based on feed-forward neural networks (FNN); both models are trained offline, using a cost function that combines the attack effects on the estimation error and the residual signal used for anomaly detection, so that the trained models are capable of recursively generating such effective sensor attacks in real-time. The effectiveness of the proposed methods is illustrated on several case studies.
We introduce the problem of learning-based attacks in a simple abstraction of cyber-physical systems---the case of a discrete-time, linear, time-invariant plant that may be subject to an attack that overrides the sensor readings and the controller ac tions. The attacker attempts to learn the dynamics of the plant and subsequently override the controllers actuation signal, to destroy the plant without being detected. The attacker can feed fictitious sensor readings to the controller using its estimate of the plant dynamics and mimic the legitimate plant operation. The controller, on the other hand, is constantly on the lookout for an attack; once the controller detects an attack, it immediately shuts the plant off. In the case of scalar plants, we derive an upper bound on the attackers deception probability for any measurable control policy when the attacker uses an arbitrary learning algorithm to estimate the system dynamics. We then derive lower bounds for the attackers deception probability for both scalar and vector plants by assuming a specific authentication test that inspects the empirical variance of the system disturbance. We also show how the controller can improve the security of the system by superimposing a carefully crafted privacy-enhancing signal on top of the nominal control policy. Finally, for nonlinear scalar dynamics that belong to the Reproducing Kernel Hilbert Space (RKHS), we investigate the performance of attacks based on nonlinear Gaussian-processes (GP) learning algorithms.
Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples are Internet-of-Things (IoT) or sensing software embedded in appliances or even specialised meters that measure and respond to electricity demands in smart grids. Due to their pervasive nature, they are usually chosen as recipients for larger scope cyber-security attacks. Those promote system-wide disruptions and are directed towards one key aspect such as confidentiality, integrity, availability or a combination of those characteristics. Our paper focuses on a particular and distressing attack where coordinated malware infected IoT units are maliciously employed to synchronously turn on or off high-wattage appliances, affecting the grids primary control management. Our model could be extended to larger (smart) grids, Active Buildings as well as similar infrastructures. Our approach models Coordinated Load-Changing Attacks (CLCA) also referred as GridLock or BlackIoT, against a theoretical power grid, containing various types of power plants. It employs Continuous-Time Markov Chains where elements such as Power Plants and Botnets are modelled under normal or attack situations to evaluate the effect of CLCA in power reliant infrastructures. We showcase our modelling approach in the scenario of a power supplier (e.g. power plant) being targeted by a botnet. We demonstrate how our modelling approach can quantify the impact of a botnet attack and be abstracted for any CPS system involving power load management in a smart grid. Our results show that by prioritising the type of power-plants, the impact of the attack may change: in particular, we find the most impacting attack times and show how different strategies impact their success. We also find the best power generator to use depending on the current demand and strength of attack.
Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the physics data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the security by obscurity principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.
Cyber-Physical Systems (CPSs) are increasingly important in critical areas of our society such as intelligent power grids, next generation mobile devices, and smart buildings. CPS operation has characteristics including considerable heterogeneity, va riable dynamics, and high complexity. These systems have also scarce resources in order to satisfy their entire load demand, which can be divided into data processing and service execution. These new characteristics of CPSs need to be managed with novel strategies to ensure their resilient operation. Towards this goal, we propose an SDN-based solution enhanced by distributed Network Function Virtualization (NFV) modules located at the top-most level of our solution architecture. These NFV agents will take orchestrated management decisions among themselves to ensure a resilient CPS configuration against threats, and an optimum operation of the CPS. For this, we study and compare two distinct incentive mechanisms to enforce cooperation among NFVs. Thus, we aim to offer novel perspectives into the management of resilient CPSs, embedding IoT devices, modeled by Game Theory (GT), using the latest software and virtualization platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا