ﻻ يوجد ملخص باللغة العربية
Multi-scale structures are prevalent in both natural and artificial systems, as they can handle increasing complexity. Several terms are employed almost interchangeably across various application domains to refer to the multi-scale concept - e.g., hierarchy, holarchy, multi-level, multi-layer, nested, embedded, micro-macro or coarse graining. While the concrete meanings behind these terms may differ slightly, several core commonalities persist across all cases. In this position paper we aim to highlight these common features of the multi-scale concept, as a preliminary basis for a generic theory of multi-scale systems. We discuss the concepts of scale and multi-scale systems in general, and then of multi-scale feedback systems in particular, focusing on the role played by information in such systems. Our long-term objective is to develop a general theory of multi-scale feedback systems, applicable across all domains dealing with complex systems.
Multi-scale feedback systems, where information cycles through micro- and macro-scales leading to adaptation, are ubiquitous across domains, from animal societies and human organisations to electric grids and neural networks. Studies on the effects o
Extended from the classic switched system, themulti-dimensional switched system (MDSS) allows for subsystems(switching modes) with different state dimensions. In this work,we study the stability problem of the MDSS, whose state transi-tion at each sw
We address the link between the controllability or observability of a stochastic complex system and concepts of information theory. We show that the most influential degrees of freedom can be detected without acting on the system, by measuring the ti
This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared e
This paper presents a network hardware-in-the-loop (HIL) simulation system for modeling large-scale power systems. Researchers have developed many HIL test systems for power systems in recent years. Those test systems can model both microsecond-level