ترغب بنشر مسار تعليمي؟ اضغط هنا

An Information-oriented Model of Multi-Scale (Feedback) Systems

181   0   0.0 ( 0 )
 نشر من قبل Ada Diaconescu Dr.
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-scale structures are prevalent in both natural and artificial systems, as they can handle increasing complexity. Several terms are employed almost interchangeably across various application domains to refer to the multi-scale concept - e.g., hierarchy, holarchy, multi-level, multi-layer, nested, embedded, micro-macro or coarse graining. While the concrete meanings behind these terms may differ slightly, several core commonalities persist across all cases. In this position paper we aim to highlight these common features of the multi-scale concept, as a preliminary basis for a generic theory of multi-scale systems. We discuss the concepts of scale and multi-scale systems in general, and then of multi-scale feedback systems in particular, focusing on the role played by information in such systems. Our long-term objective is to develop a general theory of multi-scale feedback systems, applicable across all domains dealing with complex systems.



قيم البحث

اقرأ أيضاً

Multi-scale feedback systems, where information cycles through micro- and macro-scales leading to adaptation, are ubiquitous across domains, from animal societies and human organisations to electric grids and neural networks. Studies on the effects o f timing on system properties are often domain specific. The Multi-Scale Abstraction Feedbacks (MSAF) design pattern aims to generalise the description and understanding of multi-scale systems where feedback occurs across scales. We expand on MSAF to include timing considerations. We then apply these considerations to two models: a hierarchical oscillator (HO) and a hierarchical cellular automata (HCA). Results show how (i) different timing configurations significantly affect system macro-properties and (ii) different regions of time configurations can lead to the same macro-properties. These results contribute to theory, while also providing useful insights for designing and controlling such systems.
128 - Mengqi Xue , Yang Tang , Wei Ren 2020
Extended from the classic switched system, themulti-dimensional switched system (MDSS) allows for subsystems(switching modes) with different state dimensions. In this work,we study the stability problem of the MDSS, whose state transi-tion at each sw itching instant is characterized by the dimensionvariation and the state jump, without extra constraint imposed.Based on the proposed transition-dependent average dwell time(TDADT) and the piecewise TDADT methods, along with the pro-posed parametric multiple Lyapunov functions (MLFs), sufficientconditions for the practical and the asymptotical stabilities of theMDSS are respectively derived for the MDSS in the presenceof unstable subsystems. The stability results for the MDSS areapplied to the consensus problem of the open multi-agent system(MAS) which exhibits dynamic circulation behaviors. It is shownthat the (practical) consensus of the open MAS with disconnectedswitching topologies can be ensured by (practically) stabilizingthe corresponding MDSS with unstable switching modes via theproposed TDADT and parametric MLF methods.
We address the link between the controllability or observability of a stochastic complex system and concepts of information theory. We show that the most influential degrees of freedom can be detected without acting on the system, by measuring the ti me-delayed multi-information. Numerical and analytical results support this claim, which is developed in the case of a simple stochastic model on a graph, the so-called voter model. The importance of the noise when controlling the system is demonstrated, leading to the concept of control length. The link with classical control theory is given, as well as the interpretation of controllability in terms of the capacity of a communication canal.
This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared e nergy storage in distribution systems with high penetration of solar photovoltaic energy systems. Small-scale behind-the-meter (BTM) batteries are expensive, not fully utilized, and their net value is difficult to generalize and to control for grid services. On the other hand, utility-scale shared energy storage (USSES) systems have the potential to provide primary (e.g., demand-side management, deferral of system upgrade, and demand charge reduction) as well as secondary (e.g., frequency regulation, resource adequacy, and energy arbitrage) grid services. Under the existing cost structure, storage deployed only for primary purpose cannot justify the economic benefit to owners. However, the delivery of storage for primary service utilizes only 1-50% of total battery lifetime capacity. In the proposed approach, for each candidate set of locations and sizes, the contribution of USSES systems to grid voltage deviation and power loss are evaluated and diverse Pareto-optimal front is created. USSES systems are dispersed through a new chromosome representation approach. From the list of Pareto-optimal front, distribution system planners will have the opportunity to select appropriate locations based on desired objectives. The proposed approach is demonstrated on the IEEE 123-node distribution test feeder with utility-scale PV and USSES systems.
This paper presents a network hardware-in-the-loop (HIL) simulation system for modeling large-scale power systems. Researchers have developed many HIL test systems for power systems in recent years. Those test systems can model both microsecond-level dynamic responses of power electronic systems and millisecond-level transients of transmission and distribution grids. By integrating individual HIL test systems into a network of HIL test systems, we can create large-scale power grid digital twins with flexible structures at required modeling resolution that fits for a wide range of system operating conditions. This will not only significantly reduce the need for field tests when developing new technologies but also greatly shorten the model development cycle. In this paper, we present a networked OPAL-RT based HIL test system for developing transmission-distribution coordinative Volt-VAR regulation technologies as an example to illustrate system setups, communication requirements among different HIL simulation systems, and system connection mechanisms. Impacts of communication delays, information exchange cycles, and computing delays are illustrated. Simulation results show that the performance of a networked HIL test system is satisfactory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا