ﻻ يوجد ملخص باللغة العربية
As we enter the era of large-scale imaging surveys with the up-coming telescopes such as LSST and SKA, it is envisaged that the number of known strong gravitational lensing systems will increase dramatically. However, these events are still very rare and require the efficient processing of millions of images. In order to tackle this image processing problem, we present Machine Learning techniques and apply them to the Gravitational Lens Finding Challenge. The Convolutional Neural Networks (CNNs) presented have been re-implemented within a new modular, and extendable framework, LEXACTUM. We report an Area Under the Curve (AUC) of 0.9343 and 0.9870, and an execution time of 0.0061s and 0.0594s per image, for the Space and Ground datasets respectively, showing that the results obtained by CNNs are very competitive with conventional methods (such as visual inspection and arc finders) for detecting gravitational lenses.
Future large-scale surveys with high resolution imaging will provide us with a few $10^5$ new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to v
We use convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to estimate the parameters of strong gravitational lenses from interferometric observations. We explore multiple strategies and find that the best results are obtained w
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies fro
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human