ﻻ يوجد ملخص باللغة العربية
The full third Gaia data release will provide the calibrated spectra obtained with the blue and red Gaia slit-less spectrophotometers. The main challenge when facing Gaia spectral calibration is that no lamp spectra or flat fields are available during the mission. Also, the significant size of the line spread function with respect to the dispersion of the prisms produces alien photons contaminating neighbouring positions of the spectra. This makes the calibration special and different from standard approaches. This work gives a detailed description of the internal calibration model to obtain the spectrophotometric data in the Gaia catalogue. The main purpose of the internal calibration is to bring all the epoch spectra onto a common flux and pixel (pseudo-wavelength) scale, taking into account variations over the focal plane and with time, producing a mean spectrum from all the observations of the same source. In order to describe all observations in a common mean flux and pseudo-wavelength scale, we construct a suitable representation of the internally calibrated mean spectra via basis functions and we describe the transformation between non calibrated epoch spectra and calibrated mean spectra via a discrete convolution, parametrising the convolution kernel to recover the relevant coefficients. The model proposed here is able to combine all observations into a mean instrument to allow the comparison of different sources and observations obtained with different instrumental conditions along the mission and the generation of mean spectra from a number of observations of the same source. The output of this model provides the internal mean spectra, not as a sampled function (flux and wavelength), but as a linear combination of basis functions, although sampled spectra can easily be derived from them.
We present SNIascore, a deep-learning based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R $sim100$) data. The goal of SNIascore is fully automated classification of SNe Ia with a very low
While the near-infrared wavelength regime is becoming more and more important for astrophysics there is a marked lack of spectrophotometric standard star data that would allow the flux calibration of such data. Furthermore, flux calibrating medium- t
Although a catalogue of synthetic RGB magnitudes, providing photometric data for a sample of 1346 bright stars, has been recently published, its usefulness is still limited due to the small number of reference stars available, considering that they a
Given that low-mass stars have intrinsically low luminosities at optical wavelengths and a propensity for stellar activity, it is advantageous for radial velocity (RV) surveys of these objects to use near-infrared (NIR) wavelengths. In this work we d
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not p