ﻻ يوجد ملخص باللغة العربية
Porous flow-through electrodes are used as the core reactive component across electrochemical technologies. Controlling the fluid flow, species transport, and reactive environment is critical to attaining high performance. However, conventional electrode materials like felts and papers provide few opportunities for precise engineering of the electrode and its microstructure. To address these limitations, architected electrodes composed of unit cells with spatially varying geometry determined via computational optimization are proposed. Resolved simulation is employed to develop a homogenized description of the constituent unit cells. These effective properties serve as inputs to a continuum model for the electrode when used in the negative half cell of a vanadium redox flow battery. Porosity distributions minimizing power loss are then determined via computational design optimization to generate architected porosity electrodes. The architected electrodes are compared to bulk, uniform porosity electrodes and found to lead to increased power efficiency across operating flow rates and currents. The design methodology is further used to generate a scaled-up electrode with comparable power efficiency to the bench-scale systems. The variable porosity architecture and computational design methodology presented here thus offers a novel pathway for automatically generating spatially engineered electrode structures with improved power performance.
The recent boom in computational chemistry has enabled several projects aimed at discovering useful materials or catalysts. We acknowledge and address two recurring issues in the field of computational catalyst discovery. First, calculating macro-sca
It is common practice for chemists to search chemical databases based on substructures of compounds for finding molecules with desired properties. The purpose of de novo molecular generation is to generate instead of search. Existing machine learning
An experimentally feasible energy-storage concept is formulated based on vorticity (hydro)dynamics within an easy-plane insulating magnet. The free energy, associated with the magnetic winding texture, is built up in a circular easy-plane magnetic st
Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energ
Scalable and cost-effective solutions to renewable energy storage are essential to addressing the worlds rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce