ترغب بنشر مسار تعليمي؟ اضغط هنا

What and How long: Prediction of Mobile App Engagement

75   0   0.0 ( 0 )
 نشر من قبل Yuan Tian Miss
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

User engagement is crucial to the long-term success of a mobile app. Several metrics, such as dwell time, have been used for measuring user engagement. However, how to effectively predict user engagement in the context of mobile apps is still an open research question. For example, do the mobile usage contexts (e.g.,~time of day) in which users access mobile apps impact their dwell time? Answers to such questions could help mobile operating system and publishers to optimize advertising and service placement. In this paper, we first conduct an empirical study for assessing how user characteristics, temporal features, and the short/long-term contexts contribute to gains in predicting users app dwell time on the population level. The comprehensive analysis is conducted on large app usage logs collected through a mobile advertising company. The dataset covers more than 12K anonymous users and 1.3 million log events. Based on the analysis, we further investigate a novel mobile app engagement prediction problem -- can we predict simultaneously what app the user will use next and how long he/she will stay on that app? We propose several strategies for this joint prediction problem and demonstrate that our model can improve the performance significantly when compared with the state-of-the-art baselines. Our work can help mobile system developers in designing a better and more engagement-aware mobile app user experience.

قيم البحث

اقرأ أيضاً

User reviews of mobile apps often contain complaints or suggestions which are valuable for app developers to improve user experience and satisfaction. However, due to the large volume and noisy-nature of those reviews, manually analyzing them for use ful opinions is inherently challenging. To address this problem, we propose MARK, a keyword-based framework for semi-automated review analysis. MARK allows an analyst describing his interests in one or some mobile apps by a set of keywords. It then finds and lists the reviews most relevant to those keywords for further analysis. It can also draw the trends over time of those keywords and detect their sudden changes, which might indicate the occurrences of serious issues. To help analysts describe their interests more effectively, MARK can automatically extract keywords from raw reviews and rank them by their associations with negative reviews. In addition, based on a vector-based semantic representation of keywords, MARK can divide a large set of keywords into more cohesive subsets, or suggest keywords similar to the selected ones.
70 - Luis Cruz , Rui Abreu , David Lo 2019
Software testing is an important phase in the software development life-cycle because it helps in identifying bugs in a software system before it is shipped into the hand of its end users. There are numerous studies on how developers test general-pur pose software applications. The idiosyncrasies of mobile software applications, however, set mobile apps apart from general-purpose systems (e.g., desktop, stand-alone applications, web services). This paper investigates working habits and challenges of mobile software developers with respect to testing. A key finding of our exhaustive study, using 1000 Android apps, demonstrates that mobile apps are still tested in a very ad hoc way, if tested at all. However, we show that, as in other types of software, testing increases the quality of apps (demonstrated in user ratings and number of code issues). Furthermore, we find evidence that tests are essential when it comes to engaging the community to contribute to mobile open source software. We discuss reasons and potential directions to address our findings. Yet another relevant finding of our study is that Continuous Integration and Continuous Deployment (CI/CD) pipelines are rare in the mobile apps world (only 26% of the apps are developed in projects employing CI/CD) --- we argue that one of the main reasons is due to the lack of exhaustive and automatic testing.
264 - Lixin Zou , Long Xia , Zhuoye Ding 2019
Recommender systems play a crucial role in our daily lives. Feed streaming mechanism has been widely used in the recommender system, especially on the mobile Apps. The feed streaming setting provides users the interactive manner of recommendation in never-ending feeds. In such an interactive manner, a good recommender system should pay more attention to user stickiness, which is far beyond classical instant metrics, and typically measured by {bf long-term user engagement}. Directly optimizing the long-term user engagement is a non-trivial problem, as the learning target is usually not available for conventional supervised learning methods. Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(e.g. clicks, ordering) and delayed feedback~(e.g. dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation. To address these issues, in this work, we introduce a reinforcement learning framework --- FeedRec to optimize the long-term user engagement. FeedRec includes two components: 1)~a Q-Network which designed in hierarchical LSTM takes charge of modeling complex user behaviors, and 2)~an S-Network, which simulates the environment, assists the Q-Network and voids the instability of convergence in policy learning. Extensive experiments on synthetic data and a real-world large scale data show that FeedRec effectively optimizes the long-term user engagement and outperforms state-of-the-arts.
Effective long-term predictions have been increasingly demanded in urban-wise data mining systems. Many practical applications, such as accident prevention and resource pre-allocation, require an extended period for preparation. However, challenges c ome as long-term prediction is highly error-sensitive, which becomes more critical when predicting urban-wise phenomena with complicated and dynamic spatial-temporal correlation. Specifically, since the amount of valuable correlation is limited, enormous irrelevant features introduce noises that trigger increased prediction errors. Besides, after each time step, the errors can traverse through the correlations and reach the spatial-temporal positions in every future prediction, leading to significant error propagation. To address these issues, we propose a Dynamic Switch-Attention Network (DSAN) with a novel Multi-Space Attention (MSA) mechanism that measures the correlations between inputs and outputs explicitly. To filter out irrelevant noises and alleviate the error propagation, DSAN dynamically extracts valuable information by applying self-attention over the noisy input and bridges each output directly to the purified inputs via implementing a switch-attention mechanism. Through extensive experiments on two spatial-temporal prediction tasks, we demonstrate the superior advantage of DSAN in both short-term and long-term predictions.
In modern programming languages, exception handling is an effective mechanism to avoid unexpected runtime errors. Thus, failing to catch and handle exceptions could lead to serious issues like system crashing, resource leaking, or negative end-user e xperiences. However, writing correct exception handling code is often challenging in mobile app development due to the fast-changing nature of API libraries for mobile apps and the insufficiency of their documentation and source code examples. Our prior study shows that in practice mobile app developers cause many exception-related bugs and still use bad exception handling practices (e.g. catch an exception and do nothing). To address such problems, in this paper, we introduce two novel techniques for recommending correct exception handling code. One technique, XRank, recommends code to catch an exception likely occurring in a code snippet. The other, XHand, recommends correction code for such an occurring exception. We have developed ExAssist, a code recommendation tool for exception handling using XRank and XHand. The empirical evaluation shows that our techniques are highly effective. For example, XRank has top-1 accuracy of 70% and top-3 accuracy of 87%. XHands results are 89% and 96%, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا