ﻻ يوجد ملخص باللغة العربية
Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifold, via Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both two schemes enjoy stochastic $Q$-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, which enable us to prove unconditional stability, ergodicity and error estimates. Based on two upwind schemes, several numerical examples - including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system - are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. Thus they can be adapted to manifold-related computations induced from high dimensional molecular dynamics.
We aim at the development and analysis of the numerical schemes for approximately solving the backward diffusion-wave problem, which involves a fractional derivative in time with order $alphain(1,2)$. From terminal observations at two time levels, i.
In this article, we discuss the numerical solution of diffusion equations on random surfaces within the isogeometric framework. Complex computational geometries, given only by surface triangulations, are recast into the isogeometric context by transf
We present a novel class of high-order space-time finite element schemes for the Poisson-Nernst-Planck (PNP) equations. We prove that our schemes are mass conservative, positivity preserving, and unconditionally energy stable for any order of approxi
We consider stochastic differential equations driven by a general Levy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solu
A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made b