ﻻ يوجد ملخص باللغة العربية
We present a characterization of the domain wall solutions arising as minimizers of an energy functional obtained in a suitable asymptotic regime of micromagnetics for infinitely long thin film ferromagnetic strips in which the magnetization is forced to lie in the film plane. For the considered energy, we provide existence, uniqueness, monotonicity, and symmetry of the magnetization profiles in the form of 180$^circ$ and 360$^circ$ walls. We also demonstrate how this energy arises as a $Gamma$-limit of the reduced two-dimensional thin film micromagnetic energy that captures the non-local effects associated with the stray field, and characterize its respective energy minimizers.
We present a quantitative investigation of magnetic domain wall pinning in thin magnets with perpendicular anisotropy. A self-consistent description exploiting the universal features of the depinning and thermally activated sub-threshold creep regime
We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold,
The one-dimensional problem of a static head-to-head domain wall structure in a thin soft-magnetic nanowire with circular cross-section is treated within the framework of micromagnetic theory. A radius-dependent analytic form of the domain wall profi
A magnetic helix arises in chiral magnets with a wavelength set by the spin-orbit coupling. We show that the helimagnetic order is a nanoscale analog to liquid crystals, exhibiting topological structures and domain walls that are distinctly different
We demonstrate reproducible voltage induced non-volatile switching of the magnetization in an epitaxial thin Fe81Ga19 film. Switching is induced at room temperature and without the aid of an external magnetic field. This is achieved by the modificati