ﻻ يوجد ملخص باللغة العربية
Constructing differentiation algorithms with a fixed-time convergence and a predefined Upper Bound on their Settling Time (textit{UBST}), i.e., predefined-time differentiators, is attracting attention for solving estimation and control problems under time constraints. However, existing methods are limited to signals having an $n$-th Lipschitz derivative. Here, we introduce a general methodology to design $n$-th order predefined-time differentiators for a broader class of signals: for signals, whose $(n+1)$-th derivative is bounded by a function with bounded logarithmic derivative, i.e., whose $(n+1)$-th derivative grows at most exponentially. Our approach is based on a class of time-varying gains known as Time-Base Generators (textit{TBG}). The only assumption to construct the differentiator is that the class of signals to be differentiated $n$-times have a $(n+1)$-th derivative bounded by a known function with a known bound for its $(n+1)$-th logarithmic derivative. We show how our methodology achieves an textit{UBST} equal to the predefined time, better transient responses with smaller error peaks than autonomous predefined-time differentiators, and a textit{TBG} gain that is bounded at the settling time instant.
Algorithms having uniform convergence with respect to their initial condition (i.e., with fixed-time stability) are receiving increasing attention for solving control and observer design problems under time constraints. However, we still lack a gener
There is an increasing interest in designing differentiators, which converge exactly before a prespecified time regardless of the initial conditions, i.e., which are fixed-time convergent with a predefined Upper Bound of their Settling Time (UBST), d
Differentiation is an important task in control, observation and fault detection. Levants differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a signal with a bounded high-order derivative. However, the conve
This paper aims to provide a methodology for generating autonomous and non-autonomous systems with a fixed-time stable equilibrium point where an Upper Bound of the Settling Time (UBST) is set a priori as a parameter of the system. In addition, some
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanic