ﻻ يوجد ملخص باللغة العربية
Fluctuation-dissipation relations or theorems (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active microrheology experiment, in which a spherical colloid is pulled with a constant external force through a fluid, creating near-equilibrium and far-from-equilibrium systems. We characterize the structural and dynamical properties of these systems, and reconstruct an effective generalized Langevin equation (GLE) for the colloid dynamics. Specifically, we test the validity of two FDTs: The first FDT relates the non-equilibrium response of a system to equilibrium correlation functions, and the second FDT relates the memory friction kernel in the GLE to the stochastic force. We find that the validity of the first FDT depends strongly on the strength of the external driving: it is fulfilled close to equilibrium and breaks down far from it. In contrast, we observe that the second FDT is always fulfilled. We provide a mathematical argument why this generally holds for memory kernels reconstructed from a deterministic Volterra equation for correlation functions, even for non-stationary non-equilibrium systems. Motivated by the Mori-Zwanzig formalism, we therefore suggest to impose an orthogonality constraint on the stochastic force, which is in fact equivalent to the validity of this Volterra equation. Such GLEs automatically satisfy the second FDT and are unique, which is desirable when using GLEs for coarse-grained modeling.
We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condense
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over
We have investigated the validity of the fluctuation-dissipation theorem (FDT) and the applicability of the concept of effective temperature in a number of non-equilibrium soft glassy materials. Using a combination of passive and active microrheology
By analogy with linear-response we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations including the intrinsic bandwidths of the respective fluctuations. For this purpose we individuate