ترغب بنشر مسار تعليمي؟ اضغط هنا

Repulsive Casimir force in stationary axisymmetric spacetimes

61   0   0.0 ( 0 )
 نشر من قبل Ronaldo Carlotto Batista
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the influence of stationary axisymmetric spacetimes on Casimir energy. We consider a massive scalar field and analyze its dependence on the apparatus orientation with respect to the dragging direction associated with such spaces. We show that, for an apparatus orientation not considered before in the literature, the Casimir energy can change its sign, producing a repulsive force. As applications, we analyze two specific metrics: one associated with a linear motion of a cylinder and a circular equatorial motion around a gravitational source described by Kerr geometry.



قيم البحث

اقرأ أيضاً

163 - R. Zhao , J. Zhou , Th. Koschny 2009
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the in teraction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
We consider the problem of essential self-adjointness of the spatial part of the Klein-Gordon operator in stationary spacetimes. This operator is shown to be a Laplace-Beltrami type operator plus a potential. In globally hyperbolic spacetimes, essent ial selfadjointness is proven assuming smoothness of the metric components and semi-boundedness of the potential. This extends a recent result for static spacetimes to the stationary case. Furthermore, we generalize the results to certain non-globally hyperbolic spacetimes.
In this manuscript, we consider a scenario in which a spin-1/2 quanton goes through a superposition of co-rotating and counter-rotating geodetic circular paths, which play the role of the paths of a Mach-Zehnder interferometer in a stationary and axi symmetric spacetime. Since the spin of the particle plays the role of a quantum clock, as the quanton moves in a superposed path it gets entangled with the momentum (or the path), and this will cause the interferometric visibility (or the internal quantum coherence) to drop, since, in stationary axisymmetric spacetimes there is a difference in proper time elapsed along the two trajectories. However, as we show here, the proper time of each path will couple to the corresponding local Wigner rotation, and the effect in the spin of the superposed particle will be a combination of both. Besides, we discuss a general framework to study the local Wigner rotations of spin-1/2 particles in general stationary axisymmetric spacetimes for circular orbits.
In this paper we consider homothetic Killing vectors in the class of stationary axisymmetric vacuum (SAV) spacetimes, where the components of the vectors are functions of the time and radial coordinates. In this case the component of any homothetic K illing vector along the $z$ direction must be constant. Firstly, it is shown that either the component along the radial direction is constant or we have the proportionality $g_{phiphi}propto g_{rhorho}$, where $g_{phiphi}>0$. In both cases, complete analyses are carried out and the general forms of the homothetic Killing vectors are determined. The associated conformal factors are also obtained. The case of vanishing twist in the metric, i.e., $omega= 0$ is considered and the complete forms of the homothetic Killing vectors are determined, as well as the associated conformal factors.
123 - Marco Astorino 2014
Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This family contains, amongst other things, rotating extensions of the Bekenstein black hole and also its angular and mass multipolar generalisations. Further addition of NUT charge is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا