ﻻ يوجد ملخص باللغة العربية
We study general properties of the mapping between 5$d$ and 4$d$ superconformal field theories (SCFTs) under both twisted circle compactification and tuning of local relevant deformation and CB moduli. After elucidating in generality when a 5$d$ SCFT reduces to a 4$d$ one, we identify nearly all $mathcal{N}=1$ 5$d$ SCFT parents of rank-2 4$d$ $mathcal{N}=2$ SCFTs. We then use this result to map out the mass deformation trajectories among the rank-2 theories in 4$d$. This can be done by first understanding the mass deformations of the 5$d$ $mathcal{N}=1$ SCFTs and then map them to 4$d$. The former task can be easily achieved by exploiting the fact that the 5$d$ parent theories can be obtained as the strong coupling limit of Lagrangian theories, and the latter by understanding the behavior under compactification. Finally we identify a set of general criteria that 4$d$ moduli spaces of vacua have to satisfy when the corresponding SCFTs are related by mass deformations and check that all our RG-flows satisfy them. Many of the mass deformations we find are not visible from the corresponding complex integrable systems.
We study weak coupling perturbative series in 4d N=2 and 5d N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in zero instanton sector are Borel summable for various observables. Our result fo
Building on recent progress in the study of compactifications of $6d$ $(1,0)$ superconformal field theories (SCFTs) on Riemann surfaces to $4d$ $mathcal{N}=1$ theories, we initiate a systematic study of compactifications of $5d$ $mathcal{N}=1$ SCFTs
We discuss reductions of general N=1 four dimensional gauge theories on S^2. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of t
We explore the connection of anti-de-Sitter supergravity in six dimensions, based on the exceptional F(4) superalgebra, and its boundary superconformal singleton theory. The interpretation of these results in terms of a D4-D8 system and its near horizon geometry is suggested.