ترغب بنشر مسار تعليمي؟ اضغط هنا

L 98-59: a Benchmark System of Small Planets for Future Atmospheric Characterization

65   0   0.0 ( 0 )
 نشر من قبل Daria Pidhorodetska
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

L 98-59 is an M3V dwarf star that hosts three small (R < 1.6 Earth radii) planets. The host star is bright (K = 7.1) and nearby (10.6 pc), making the system a prime target for follow-up characterization with the Hubble Space Telescope (HST) and the upcoming James Webb Space Telescope (JWST). Herein, we use simulated transmission spectroscopy to evaluate the detectability of spectral features with HST and JWST assuming diverse atmospheric scenarios (e.g., atmospheres dominated by H2, H2O, CO2, or O2). We find that H2O and CH4 present in a low mean-molecular weight atmosphere could be detected with HST in 1 transit for the two outermost planets, while H2O in a clear steam atmosphere could be detected in 6 transits or fewer with HST for all three planets. We predict that observations using JWST/NIRISS would be capable of detecting a clear steam atmosphere in 1 transit for each planet, and H2O absorption in a hazy steam atmosphere in 2 transits or less. In a clear, desiccated atmosphere, O2 absorption may be detectable for all three planets with NIRISS. If the L 98-59 planets possess a clear, Venus-like atmosphere, NIRSpec could detect CO2 within 26 transits for each planet, but the presence of H2SO4 clouds would significantly suppress CO2 absorption. The L 98-59 system is an excellent laboratory for comparative planetary studies of transiting multiplanet systems, and observations of the system via HST and JWST would present a unique opportunity to test the accuracy of the models presented in this study.



قيم البحث

اقرأ أيضاً

We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-sized planets transiting L 98-59 (TOI-175, TIC 307210830) -- a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broad-band photomet ry we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8REarth to 1.6REarth. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in 4 more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system.
L 98-59 (TIC 307210830, TOI-175) is a nearby M3 dwarf around which TESS revealed three terrestrial-sized transiting planets (0.80, 1.35, 1.57 Earth radii) in a compact configuration with orbital periods shorter than 7.5 days. Here we aim to measure t he masses of the known transiting planets in this system using precise radial velocity (RV) measurements taken with the HARPS spectrograph. We consider both trained and untrained Gaussian process regression models of stellar activity to simultaneously model the RV data with the planetary signals. Our RV analysis is then supplemented with dynamical simulations to provide strong constraints on the planets orbital eccentricities by requiring long-term stability. We measure the planet masses of the two outermost planets to be $2.46pm 0.31$ and $2.26pm 0.50$ Earth masses which confirms their bulk terrestrial compositions. We are able to place an upper limit on the mass of the smallest, innermost planet of $<0.98$ Earth masses with 95% confidence. Our RV plus dynamical stability analysis places strong constraints on the orbital eccentricities and reveals that each planets orbit likely has $e<0.1$ to ensure a dynamically stable system. The L 98-59 compact system of three likely rocky planets offers a unique laboratory for studies of planet formation, dynamical stability, and comparative atmospheric planetology. Continued RV monitoring will help refine the characterization of the innermost planet and potentially reveal additional planets in the system at wider separations.
An increasing number of potentially habitable terrestrial planets and planet candidates are found by ongoing planet search programs. The search for atmospheric signatures to establish planetary habitability and the presence of life might be possible in the future. We want to quantify the accuracy of retrieved atmospheric parameters which might be obtained from infrared emission spectroscopy. We use synthetic observations of hypothetical habitable planets, constructed with a parametrized atmosphere model, a high-resolution radiative transfer model and a simplified noise model. Classic statistical tools such as chi2 statistics and least-square fits were used to analyze the simulated observations. When adopting the design of currently planned or proposed exoplanet characterization missions, we find that emission spectroscopy could provide weak limits on surface conditions of terrestrial planets, hence their potential habitability. However, these mission designs are unlikely to allow to characterize the composition of the atmosphere of a habitable planet, even though CO2 is detected. Upon increasing the signal-to-noise ratios by about a factor of 2-5 (depending on spectral resolution) compared to current mission designs, the CO2 content could be characterized to within two orders of magnitude. The detection of the O3 biosignature remains marginal. The atmospheric temperature structure could not be constrained. Therefore, a full atmospheric characterization seems to be beyond the capabilities of such missions when using only emission spectroscopy during secondary eclipse or target visits. Other methods such as transmission spectroscopy or orbital photometry are probably needed in order to give additional constraints and break degeneracies. (abridged)
We present new transit observations of the hot Jupiter WASP-74 b ($T_mathrm{eq} sim$ 1860 K) using the high-resolution spectrograph HARPS-N and the multi-colour simultaneous imager MuSCAT2. We refine the orbital properties of the planet and its host star, and measure its obliquity for the first time. The measured sky-projected angle between the stellar spin-axis and the planets orbital axis is compatible with an orbit well-aligned with the equator of the host star ($lambda = 0.77pm0.99 mathrm{deg}$). We are not able to detect any absorption feature of H$alpha$, or any other atomic spectral features, in its high-resolution transmission spectra due to low S/N at the line cores. Despite previous claims regarding the presence of strong optical absorbers such TiO and VO gases in the atmosphere of WASP-74 b, the new ground-based photometry combined with a reanalysis of previously reported observations from the literature shows a slope in the low-resolution transmission spectrum steeper than expected from Rayleigh scattering alone.
We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit ob servations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and are included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c and GJ3470 b to be 6.48$^{+0.99}_{-0.93}$, 2.14$^{+1.08}_{-1.04}$, and 12.58$^{+1.31}_{-1.28}$ M$_oplus$ respectively. K2-3 d was not significantly detected and has a 3-$sigma$ upper limit of 2.80 M$_oplus$. These two systems are training cases for future TESS systems; due to the low planet densities ($rho$ $<$ 3.7 g cm$^{-3}$) and bright host stars (K $<$ 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا