ترغب بنشر مسار تعليمي؟ اضغط هنا

Incorporating Visual Layout Structures for Scientific Text Classification

252   0   0.0 ( 0 )
 نشر من قبل Zejiang Shen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classifying the core textual components of a scientific paper-title, author, body text, etc.-is a critical first step in automated scientific document understanding. Previous work has shown how using elementary layout information, i.e., each tokens 2D position on the page, leads to more accurate classification. We introduce new methods for incorporating VIsual LAyout (VILA) structures, e.g., the grouping of page texts into text lines or text blocks, into language models to further improve performance. We show that the I-VILA approach, which simply adds special tokens denoting the boundaries of layout structures into model inputs, can lead to 1.9% Macro F1 improvements for token classification. Moreover, we design a hierarchical model, H-VILA, that encodes the text based on layout structures and record an up-to 47% inference time reduction with less than 1.5% Macro F1 loss for the text classification models. Experiments are conducted on a newly curated evaluation suite, S2-VLUE, with a novel metric measuring classification uniformity within visual groups and a new dataset of gold annotations covering papers from 19 scientific disciplines. Pre-trained weights, benchmark datasets, and source code will be available at https://github.com/allenai/VILA.

قيم البحث

اقرأ أيضاً

170 - Frederick Liu , Besim Avci 2019
Feature attribution methods, proposed recently, help users interpret the predictions of complex models. Our approach integrates feature attributions into the objective function to allow machine learning practitioners to incorporate priors in model bu ilding. To demonstrate the effectiveness our technique, we apply it to two tasks: (1) mitigating unintended bias in text classifiers by neutralizing identity terms; (2) improving classifier performance in a scarce data setting by forcing the model to focus on toxic terms. Our approach adds an L2 distance loss between feature attributions and task-specific prior values to the objective. Our experiments show that i) a classifier trained with our technique reduces undesired model biases without a trade off on the original task; ii) incorporating priors helps model performance in scarce data settings.
Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification. Particularly, previous studies suggest that prompt-tuning has remarkable superiority in the low-data scenario over the generic fine-tuning methods with extra classifiers. The core idea of prompt-tuning is to insert text pieces, i.e., template, to the input and transform a classification problem into a masked language modeling problem, where a crucial step is to construct a projection, i.e., verbalizer, between a label space and a label word space. A verbalizer is usually handcrafted or searched by gradient descent, which may lack coverage and bring considerable bias and high variances to the results. In this work, we focus on incorporating external knowledge into the verbalizer, forming a knowledgeable prompt-tuning (KPT), to improve and stabilize prompt-tuning. Specifically, we expand the label word space of the verbalizer using external knowledge bases (KBs) and refine the expanded label word space with the PLM itself before predicting with the expanded label word space. Extensive experiments on zero and few-shot text classification tasks demonstrate the effectiveness of knowledgeable prompt-tuning.
To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The Bounding Boxes in Text Transformer (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark (https://visualcommonsense.com), achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided (https://github.com/google-research/language/tree/master/language/question_answering/b2t2).
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computation cost mainly from cross-modal at tention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by pre-training on three novel learning objectives, extracting feature indexes offline, and employing instant dot-product matching with further re-ranking, which significantly speeds up retrieval process. In fact, LightningDOT achieves new state of the art across multiple ITR benchmarks such as Flickr30k, COCO and Multi30K, outperforming existing pre-trained models that consume 1000x magnitude of computational hours. Code and pre-training checkpoints are available at https://github.com/intersun/LightningDOT.
Documents often contain complex physical structures, which make the Document Layout Analysis (DLA) task challenging. As a pre-processing step for content extraction, DLA has the potential to capture rich information in historical or scientific docume nts on a large scale. Although many deep-learning-based methods from computer vision have already achieved excellent performance in detecting emph{Figure} from documents, they are still unsatisfactory in recognizing the emph{List}, emph{Table}, emph{Text} and emph{Title} category blocks in DLA. This paper proposes a VTLayout model fusing the documents deep visual, shallow visual, and text features to localize and identify different category blocks. The model mainly includes two stages, and the three feature extractors are built in the second stage. In the first stage, the Cascade Mask R-CNN model is applied directly to localize all category blocks of the documents. In the second stage, the deep visual, shallow visual, and text features are extracted for fusion to identify the category blocks of documents. As a result, we strengthen the classification power of different category blocks based on the existing localization technique. The experimental results show that the identification capability of the VTLayout is superior to the most advanced method of DLA based on the PubLayNet dataset, and the F1 score is as high as 0.9599.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا