ﻻ يوجد ملخص باللغة العربية
During the preparatory phase of the International Linear Collider (ILC) project, all technical development and engineering design needed for the start of ILC construction must be completed, in parallel with intergovernmental discussion of governance and sharing of responsibilities and cost. The ILC Preparatory Laboratory (Pre-lab) is conceived to execute the technical and engineering work and to assist the intergovernmental discussion by providing relevant information upon request. It will be based on a worldwide partnership among laboratories with a headquarters hosted in Japan. This proposal, prepared by the ILC International Development Team and endorsed by the International Committee for Future Accelerators, describes an organisational framework and work plan for the Pre-lab. Elaboration, modification and adjustment should be introduced for its implementation, in order to incorporate requirements arising from the physics community, laboratories, and governmental authorities interested in the ILC.
Recently, the Turkic Accelerator Complex (TAC) is proposed as a regional facility for accelerator based fundamental and applied research. The complex will include linac on ring type electron-positron collider as a phi, charm and tau factory, linac ba
TeV center of mass energy lepton-hadron collider is necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Recently proposed QCD Explorer utilizes the energy advantage of the LHC proton a
In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background f
The Frascati National Laboratory (LNF) is the largest and the oldest among the National Laboratories of the Italian Institute for Nuclear Physics (INFN). Since its foundation in 1954, it has been devoted to two main activities: the development, const
The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is un